These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


553 related items for PubMed ID: 12384096

  • 1. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W, Calvin HI, David LL, Wu K, McCormack AL, Zhu GP, Fu SC.
    Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096
    [Abstract] [Full Text] [Related]

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643
    [Abstract] [Full Text] [Related]

  • 5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K, Chaves JM, Srivastava OP, Kirk M.
    Exp Eye Res; 2008 Oct 16; 87(4):356-66. PubMed ID: 18662688
    [Abstract] [Full Text] [Related]

  • 6. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
    Andley UP, Malone JP, Townsend RR.
    PLoS One; 2014 Oct 16; 9(4):e95507. PubMed ID: 24760011
    [Abstract] [Full Text] [Related]

  • 7. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S.
    Invest Ophthalmol Vis Sci; 2011 Jun 13; 52(7):4182-91. PubMed ID: 21436267
    [Abstract] [Full Text] [Related]

  • 8. Modifications in lens protein biosynthesis signal the initiation of cataracts induced by buthionine sulfoximine in mice.
    Calvin HI, Wu JX, Viswanadhan K, Fu SC.
    Exp Eye Res; 1996 Oct 13; 63(4):357-68. PubMed ID: 8944543
    [Abstract] [Full Text] [Related]

  • 9. Arginine 54 and Tyrosine 118 residues of {alpha}A-crystallin are crucial for lens formation and transparency.
    Xia CH, Liu H, Chang B, Cheng C, Cheung D, Wang M, Huang Q, Horwitz J, Gong X.
    Invest Ophthalmol Vis Sci; 2006 Jul 13; 47(7):3004-10. PubMed ID: 16799046
    [Abstract] [Full Text] [Related]

  • 10. Induction of cortical cataracts in cultured mouse lenses with H-89, an inhibitor of protein kinase A.
    Calvin HI, Wu K, Li W, Guo L, Banerjee U, Fu SC.
    Curr Eye Res; 2003 Nov 13; 27(5):269-78. PubMed ID: 14562163
    [Abstract] [Full Text] [Related]

  • 11. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.
    Mohanty BP, Bhattacharjee S, Das MK.
    Indian J Biochem Biophys; 2011 Feb 13; 48(1):35-41. PubMed ID: 21469600
    [Abstract] [Full Text] [Related]

  • 12. Contribution of calpain Lp82-induced proteolysis to experimental cataractogenesis in mice.
    Nakamura Y, Fukiage C, Shih M, Ma H, David LL, Azuma M, Shearer TR.
    Invest Ophthalmol Vis Sci; 2000 May 13; 41(6):1460-6. PubMed ID: 10798663
    [Abstract] [Full Text] [Related]

  • 13. Calcium activated proteolysis and protein modification in the U18666A cataract.
    Chandrasekher G, Cenedella RJ.
    Exp Eye Res; 1993 Dec 13; 57(6):737-45. PubMed ID: 8150025
    [Abstract] [Full Text] [Related]

  • 14. Progressive modifications of mouse lens crystallins in cataracts induced by buthionine sulfoximine.
    Calvin HI, Patel SA, Zhang JP, Li MY, Fu SC.
    Exp Eye Res; 1992 Apr 13; 54(4):611-9. PubMed ID: 1623946
    [Abstract] [Full Text] [Related]

  • 15. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA, Leverenz VR, Fowler KE, Reddy VN, Giblin FJ.
    Exp Eye Res; 2000 Oct 13; 71(4):371-83. PubMed ID: 10995558
    [Abstract] [Full Text] [Related]

  • 16. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N, Awakura M, Takemoto L, Inomata M, Takata T, Fujii N, Saito T.
    Mol Vis; 2003 Jul 07; 9():315-22. PubMed ID: 12847419
    [Abstract] [Full Text] [Related]

  • 17. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y, Yi L, Yan G, Fang Y, Jang Y, Wu X, Zhou X, Wei L.
    Curr Eye Res; 2010 Jul 07; 35(7):620-30. PubMed ID: 20597648
    [Abstract] [Full Text] [Related]

  • 18. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.
    Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256
    [Abstract] [Full Text] [Related]

  • 19. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P, Hassan A, Smith JB, Abraham EC.
    Invest Ophthalmol Vis Sci; 2002 Oct 11; 43(10):3265-72. PubMed ID: 12356833
    [Abstract] [Full Text] [Related]

  • 20. AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress.
    Muchowski PJ, Valdez MM, Clark JI.
    Invest Ophthalmol Vis Sci; 1999 Apr 11; 40(5):951-8. PubMed ID: 10102292
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.