These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. Usatyuk PV, Romer LH, He D, Parinandi NL, Kleinberg ME, Zhan S, Jacobson JR, Dudek SM, Pendyala S, Garcia JG, Natarajan V. J Biol Chem; 2007 Aug 10; 282(32):23284-95. PubMed ID: 17562703 [Abstract] [Full Text] [Related]
4. An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Whorton AR, Hoidal JR. Am J Physiol Cell Physiol; 2002 Jun 10; 282(6):C1212-24. PubMed ID: 11997235 [Abstract] [Full Text] [Related]
5. Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Pendyala S, Gorshkova IA, Usatyuk PV, He D, Pennathur A, Lambeth JD, Thannickal VJ, Natarajan V. Antioxid Redox Signal; 2009 Apr 10; 11(4):747-64. PubMed ID: 18783311 [Abstract] [Full Text] [Related]
6. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells :a potential atherogenic source of reactive oxygen species. Meyer JW, Holland JA, Ziegler LM, Chang MM, Beebe G, Schmitt ME. Endothelium; 1999 Apr 10; 7(1):11-22. PubMed ID: 10599557 [Abstract] [Full Text] [Related]
7. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. Harijith A, Pendyala S, Ebenezer DL, Ha AW, Fu P, Wang YT, Ma K, Toth PT, Berdyshev EV, Kanteti P, Natarajan V. Am J Physiol Lung Cell Mol Physiol; 2016 Aug 01; 311(2):L337-51. PubMed ID: 27343196 [Abstract] [Full Text] [Related]
8. Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells. Bayraktutan U, Blayney L, Shah AM. Arterioscler Thromb Vasc Biol; 2000 Aug 01; 20(8):1903-11. PubMed ID: 10938010 [Abstract] [Full Text] [Related]
9. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JG, Natarajan V. J Biol Chem; 2009 May 29; 284(22):15339-52. PubMed ID: 19366706 [Abstract] [Full Text] [Related]
10. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kübler W, Kreuzer J. Arterioscler Thromb Vasc Biol; 2000 Apr 29; 20(4):940-8. PubMed ID: 10764657 [Abstract] [Full Text] [Related]
11. Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium. Usatyuk PV, Singleton PA, Pendyala S, Kalari SK, He D, Gorshkova IA, Camp SM, Moitra J, Dudek SM, Garcia JG, Natarajan V. J Biol Chem; 2012 Mar 16; 287(12):9360-75. PubMed ID: 22219181 [Abstract] [Full Text] [Related]
12. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB. Am J Physiol Cell Physiol; 2002 Apr 16; 282(4):C926-34. PubMed ID: 11880281 [Abstract] [Full Text] [Related]
13. Dynamin 2 and c-Abl are novel regulators of hyperoxia-mediated NADPH oxidase activation and reactive oxygen species production in caveolin-enriched microdomains of the endothelium. Singleton PA, Pendyala S, Gorshkova IA, Mambetsariev N, Moitra J, Garcia JG, Natarajan V. J Biol Chem; 2009 Dec 11; 284(50):34964-75. PubMed ID: 19833721 [Abstract] [Full Text] [Related]
14. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. Li JM, Shah AM. J Biol Chem; 2003 Apr 04; 278(14):12094-100. PubMed ID: 12560337 [Abstract] [Full Text] [Related]
15. Angiopoietin-1-induced angiogenesis is modulated by endothelial NADPH oxidase. Chen JX, Zeng H, Lawrence ML, Blackwell TS, Meyrick B. Am J Physiol Heart Circ Physiol; 2006 Oct 04; 291(4):H1563-72. PubMed ID: 16679392 [Abstract] [Full Text] [Related]
16. NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, Chitano P, Hoidal JR. Am J Physiol Lung Cell Mol Physiol; 2002 Apr 04; 282(4):L782-95. PubMed ID: 11880305 [Abstract] [Full Text] [Related]
17. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Li JM, Shah AM. Cardiovasc Res; 2001 Dec 04; 52(3):477-86. PubMed ID: 11738065 [Abstract] [Full Text] [Related]
18. Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Souza HP, Laurindo FR, Ziegelstein RC, Berlowitz CO, Zweier JL. Am J Physiol Heart Circ Physiol; 2001 Feb 04; 280(2):H658-67. PubMed ID: 11158964 [Abstract] [Full Text] [Related]
19. Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, Singh K. J Cell Physiol; 2001 Jul 04; 188(1):132-8. PubMed ID: 11382929 [Abstract] [Full Text] [Related]
20. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW. Circ Res; 2002 Dec 13; 91(12):1160-7. PubMed ID: 12480817 [Abstract] [Full Text] [Related] Page: [Next] [New Search]