These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 12389172

  • 1. [Traumatic injuries to the central nervous system and their repair].
    Nieto-Sampedro M, Collazos-Castro JE, Taylor JS, Gudiño-Cabrera G, Verdú-Navarro E, Pascual-Piédrola JI, Insausti-Serrano R.
    Rev Neurol; ; 35(6):534-52. PubMed ID: 12389172
    [Abstract] [Full Text] [Related]

  • 2. Central nervous system regeneration does not occur.
    Illis LS.
    Spinal Cord; 2012 Apr; 50(4):259-63. PubMed ID: 22105462
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Polymer and nano-technology applications for repair and reconstruction of the central nervous system.
    Cho Y, Borgens RB.
    Exp Neurol; 2012 Jan; 233(1):126-44. PubMed ID: 21985867
    [Abstract] [Full Text] [Related]

  • 5. Experimental neurobiology of central nervous system trauma.
    Faden AI.
    Crit Rev Neurobiol; 1993 Jan; 7(3-4):175-86. PubMed ID: 8221911
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Spinal cord repair: future directions.
    Fawcett JW.
    Paraplegia; 1992 Feb; 30(2):83-5. PubMed ID: 1589293
    [Abstract] [Full Text] [Related]

  • 11. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries.
    Carmichael ST.
    Curr Opin Neurol; 2003 Dec; 16(6):699-704. PubMed ID: 14624079
    [Abstract] [Full Text] [Related]

  • 12. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R, Koopmans GC, Joosten EA.
    Prog Neurobiol; 2005 Dec; 77(1-2):57-89. PubMed ID: 16271433
    [Abstract] [Full Text] [Related]

  • 13. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules.
    Fitch MT, Silver J.
    Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'.
    Li Y, Li D, Raisman G.
    J Neurocytol; 2005 Sep; 34(3-5):343-51. PubMed ID: 16841171
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M, Okano H, Toyama Y, Dai HN, Finn TP, Bregman BS.
    J Neurosci Res; 2005 Aug 15; 81(4):457-68. PubMed ID: 15968644
    [Abstract] [Full Text] [Related]

  • 18. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system.
    Santos-Benito FF, Ramón-Cueto A.
    Anat Rec B New Anat; 2003 Mar 15; 271(1):77-85. PubMed ID: 12619089
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P, Vinay L.
    Curr Opin Neurobiol; 2009 Dec 15; 19(6):587-600. PubMed ID: 19896827
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.