These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 12395427

  • 1. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
    Suárez D, Díaz N, Merz KM.
    J Comput Chem; 2002 Dec; 23(16):1587-600. PubMed ID: 12395427
    [Abstract] [Full Text] [Related]

  • 2. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H, Brothers EN, Merz KM.
    J Am Chem Soc; 2005 Mar 30; 127(12):4232-41. PubMed ID: 15783205
    [Abstract] [Full Text] [Related]

  • 3. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z, Rasmussen BA, Herzberg O.
    Protein Sci; 1999 Jan 30; 8(1):249-52. PubMed ID: 10210203
    [Abstract] [Full Text] [Related]

  • 4. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis.
    Concha NO, Rasmussen BA, Bush K, Herzberg O.
    Protein Sci; 1997 Dec 30; 6(12):2671-6. PubMed ID: 9416622
    [Abstract] [Full Text] [Related]

  • 5. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ.
    Biochemistry; 1998 Sep 08; 37(36):12404-11. PubMed ID: 9730812
    [Abstract] [Full Text] [Related]

  • 6. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
    Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R.
    J Comput Chem; 2002 Oct 08; 23(13):1281-96. PubMed ID: 12210153
    [Abstract] [Full Text] [Related]

  • 7. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation.
    Díaz N, Suárez D, Sordo TL.
    Biochemistry; 2006 Jan 17; 45(2):439-51. PubMed ID: 16401074
    [Abstract] [Full Text] [Related]

  • 8. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor.
    Park H, Merz KM.
    J Med Chem; 2005 Mar 10; 48(5):1630-7. PubMed ID: 15743204
    [Abstract] [Full Text] [Related]

  • 9. Insights into the structure and dynamics of the dinuclear zinc beta-lactamase site from Bacteroides fragilis.
    Suárez D, Brothers EN, Merz KM.
    Biochemistry; 2002 May 28; 41(21):6615-30. PubMed ID: 12022865
    [Abstract] [Full Text] [Related]

  • 10. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY, Gao J.
    Biochemistry; 2007 Nov 20; 46(46):13352-69. PubMed ID: 17966992
    [Abstract] [Full Text] [Related]

  • 11. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D, Guo H, Cui Q.
    J Am Chem Soc; 2007 Sep 05; 129(35):10814-22. PubMed ID: 17691780
    [Abstract] [Full Text] [Related]

  • 12. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M, Vila AJ, Carloni P.
    Proteins; 2004 Feb 15; 54(3):412-23. PubMed ID: 14747990
    [Abstract] [Full Text] [Related]

  • 13. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution.
    Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J.
    J Mol Biol; 1998 Nov 20; 284(1):125-36. PubMed ID: 9811546
    [Abstract] [Full Text] [Related]

  • 14. On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis.
    Wang Z, Fast W, Benkovic SJ.
    Biochemistry; 1999 Aug 03; 38(31):10013-23. PubMed ID: 10433708
    [Abstract] [Full Text] [Related]

  • 15. Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis.
    Dal Peraro M, Vila AJ, Carloni P.
    Inorg Chem; 2003 Jul 14; 42(14):4245-7. PubMed ID: 12844290
    [Abstract] [Full Text] [Related]

  • 16. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D, Buur JR, Jørgensen FS.
    Biopolymers; 1997 Sep 14; 42(3):319-36. PubMed ID: 9279125
    [Abstract] [Full Text] [Related]

  • 17. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis.
    Concha NO, Rasmussen BA, Bush K, Herzberg O.
    Structure; 1996 Jul 15; 4(7):823-36. PubMed ID: 8805566
    [Abstract] [Full Text] [Related]

  • 18. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies.
    Xu D, Guo H, Cui Q.
    J Phys Chem A; 2007 Jul 05; 111(26):5630-6. PubMed ID: 17388313
    [Abstract] [Full Text] [Related]

  • 19. Inhibitor binding by metallo-beta-lactamase IMP-1 from Pseudomonas aeruginosa: quantum mechanical/molecular mechanical simulations.
    Wang C, Guo H.
    J Phys Chem B; 2007 Aug 23; 111(33):9986-92. PubMed ID: 17663582
    [Abstract] [Full Text] [Related]

  • 20. Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase.
    Liao RZ, Yu JG, Raushel FM, Himo F.
    Chemistry; 2008 Aug 23; 14(14):4287-92. PubMed ID: 18366031
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.