These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 12401330
1. Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Hall FS, Li XF, Sora I, Xu F, Caron M, Lesch KP, Murphy DL, Uhl GR. Neuroscience; 2002; 115(1):153-61. PubMed ID: 12401330 [Abstract] [Full Text] [Related]
2. Molecular mechanisms underlying the rewarding effects of cocaine. Hall FS, Sora I, Drgonova J, Li XF, Goeb M, Uhl GR. Ann N Y Acad Sci; 2004 Oct; 1025():47-56. PubMed ID: 15542699 [Abstract] [Full Text] [Related]
3. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, Murphy DL, Uhl GR. Proc Natl Acad Sci U S A; 2001 Apr 24; 98(9):5300-5. PubMed ID: 11320258 [Abstract] [Full Text] [Related]
4. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT. J Neurosci; 2002 Jan 15; 22(2):389-95. PubMed ID: 11784783 [Abstract] [Full Text] [Related]
5. Cocaine, reward, movement and monoamine transporters. Uhl GR, Hall FS, Sora I. Mol Psychiatry; 2002 Jan 15; 7(1):21-6. PubMed ID: 11803442 [Abstract] [Full Text] [Related]
6. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, Uhl GR. Proc Natl Acad Sci U S A; 1998 Jun 23; 95(13):7699-704. PubMed ID: 9636213 [Abstract] [Full Text] [Related]
7. Changes in serotonin and norepinephrine uptake sites after chronic cocaine: pre- vs. post-withdrawal effects. Belej T, Manji D, Sioutis S, Barros HM, Nobrega JN. Brain Res; 1996 Oct 14; 736(1-2):287-96. PubMed ID: 8930335 [Abstract] [Full Text] [Related]
8. Voltammetric assessment of dopamine clearance in the absence of the dopamine transporter: no contribution of other transporters in core or shell of nucleus accumbens. Mateo Y, Budygin EA, John CE, Banks ML, Jones SR. J Neurosci Methods; 2004 Dec 30; 140(1-2):183-7. PubMed ID: 15589348 [Abstract] [Full Text] [Related]
9. Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A. J Pharmacol Exp Ther; 1999 May 30; 289(2):877-85. PubMed ID: 10215666 [Abstract] [Full Text] [Related]
10. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Wall SC, Gu H, Rudnick G. Mol Pharmacol; 1995 Mar 30; 47(3):544-50. PubMed ID: 7700252 [Abstract] [Full Text] [Related]
11. Lack of cocaine effect on dopamine clearance in the core and shell of the nucleus accumbens of dopamine transporter knock-out mice. Budygin EA, John CE, Mateo Y, Jones SR. J Neurosci; 2002 May 15; 22(10):RC222. PubMed ID: 12006604 [Abstract] [Full Text] [Related]
12. Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Miller GM, Yatin SM, De La Garza R, Goulet M, Madras BK. Brain Res Mol Brain Res; 2001 Feb 19; 87(1):124-43. PubMed ID: 11223167 [Abstract] [Full Text] [Related]
13. Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Shen HW, Hagino Y, Kobayashi H, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I. Neuropsychopharmacology; 2004 Oct 19; 29(10):1790-9. PubMed ID: 15226739 [Abstract] [Full Text] [Related]
14. Structure-activity relationships at monoamine transporters and muscarinic receptors for N-substituted-3alpha-(3'-chloro-, 4'-chloro-, and 4',4''-dichloro-substituted-diphenyl)methoxytropanes. Newman AH, Robarge MJ, Howard IM, Wittkopp SL, George C, Kopajtic T, Izenwasser S, Katz JL. J Med Chem; 2001 Feb 15; 44(4):633-40. PubMed ID: 11170654 [Abstract] [Full Text] [Related]
15. 2'-Substitution of cocaine selectively enhances dopamine and norepinephrine transporter binding. Seale TW, Avor K, Singh S, Hall N, Chan HM, Basmadjian GP. Neuroreport; 1997 Nov 10; 8(16):3571-5. PubMed ID: 9427328 [Abstract] [Full Text] [Related]
16. Lobeline analogs with enhanced affinity and selectivity for plasmalemma and vesicular monoamine transporters. Miller DK, Crooks PA, Zheng G, Grinevich VP, Norrholm SD, Dwoskin LP. J Pharmacol Exp Ther; 2004 Sep 10; 310(3):1035-45. PubMed ID: 15121762 [Abstract] [Full Text] [Related]
17. Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Mateo Y, Budygin EA, John CE, Jones SR. Proc Natl Acad Sci U S A; 2004 Jan 06; 101(1):372-7. PubMed ID: 14691264 [Abstract] [Full Text] [Related]
18. Selective inhibition of monoamine neurotransmitter transporters by synthetic local anesthetics. Sato T, Kitayama S, Mitsuhata C, Ikeda T, Morita K, Dohi T. Naunyn Schmiedebergs Arch Pharmacol; 2000 Feb 06; 361(2):214-20. PubMed ID: 10685879 [Abstract] [Full Text] [Related]
19. Reduced MPTP toxicity in noradrenaline transporter knockout mice. Rommelfanger KS, Weinshenker D, Miller GW. J Neurochem; 2004 Dec 06; 91(5):1116-24. PubMed ID: 15569255 [Abstract] [Full Text] [Related]
20. Cocaine self-administration in rats differentially alters mRNA levels of the monoamine transporters and striatal neuropeptides. Arroyo M, Baker WA, Everitt BJ. Brain Res Mol Brain Res; 2000 Nov 10; 83(1-2):107-20. PubMed ID: 11072100 [Abstract] [Full Text] [Related] Page: [Next] [New Search]