These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 12406723

  • 1. Ethylene production by Botrytis cinerea in vitro and in tomatoes.
    Cristescu SM, De Martinis D, Te Lintel Hekkert S, Parker DH, Harren FJ.
    Appl Environ Microbiol; 2002 Nov; 68(11):5342-50. PubMed ID: 12406723
    [Abstract] [Full Text] [Related]

  • 2. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus.
    Lin Y, Ruan H, Akutse KS, Lai B, Lin Y, Hou Y, Zhong F.
    J Agric Food Chem; 2019 Dec 11; 67(49):13706-13717. PubMed ID: 31693347
    [Abstract] [Full Text] [Related]

  • 3. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato.
    Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK.
    Plant Physiol; 2012 Feb 11; 158(2):1034-45. PubMed ID: 22128140
    [Abstract] [Full Text] [Related]

  • 4. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K, van Tuinen A, van Kan JAL, Wolters AA, Jacobsen E, Visser RGF, Bai Y.
    BMC Plant Biol; 2017 Dec 06; 17(1):235. PubMed ID: 29212470
    [Abstract] [Full Text] [Related]

  • 5. Methionine represses gray mold of tomato by keeping nitric oxide at an appropriate level via ethylene synthesis and signal transduction.
    Zhang Q, Zhang S, Wu B, Song Z, Shi J.
    Food Chem; 2024 Dec 15; 461():140942. PubMed ID: 39181046
    [Abstract] [Full Text] [Related]

  • 6. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea.
    Kamaruzzaman M, Wang Z, Wu M, Yang L, Han Y, Li G, Zhang J.
    Microbiol Res; 2021 Jun 15; 247():126731. PubMed ID: 33676312
    [Abstract] [Full Text] [Related]

  • 7. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses.
    Tang Q, Zhu F, Cao X, Zheng X, Yu T, Lu L.
    Food Chem; 2019 Apr 25; 278():240-247. PubMed ID: 30583368
    [Abstract] [Full Text] [Related]

  • 8. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J, ten Have A, van Kan JA.
    Plant Physiol; 2002 Jul 25; 129(3):1341-51. PubMed ID: 12114587
    [Abstract] [Full Text] [Related]

  • 9. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M, Zhang Z, Xu Z, Wang L, Chen C, Ren Z.
    Plant Cell Rep; 2021 Jan 25; 40(1):43-58. PubMed ID: 32990799
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G.
    J Proteome Res; 2012 Apr 06; 11(4):2178-92. PubMed ID: 22364583
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F.
    BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Ethylene biosynthesis in Botrytis cinerea.
    Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A.
    FEMS Microbiol Ecol; 2002 May 01; 40(2):143-9. PubMed ID: 19709221
    [Abstract] [Full Text] [Related]

  • 18. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.
    Akagi A, Dandekar AM, Stotz HU.
    Phytopathology; 2011 Nov 01; 101(11):1311-21. PubMed ID: 21809978
    [Abstract] [Full Text] [Related]

  • 19. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A.
    Mol Plant Microbe Interact; 2006 Jan 01; 19(1):33-42. PubMed ID: 16404951
    [Abstract] [Full Text] [Related]

  • 20. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato.
    Zhang X, Xu Z, Chen L, Ren Z.
    BMC Plant Biol; 2019 Oct 21; 19(1):437. PubMed ID: 31638895
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.