These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 12406723

  • 21. Comparative proteomic analysis of Botrytis cinerea secretome.
    Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR.
    J Proteome Res; 2009 Mar; 8(3):1123-30. PubMed ID: 19140674
    [Abstract] [Full Text] [Related]

  • 22. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
    Audenaert K, De Meyer GB, Höfte MM.
    Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W, Wu F.
    BMC Plant Biol; 2015 Jan 16; 15():1. PubMed ID: 25592487
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F, Fiume G.
    Commun Agric Appl Biol Sci; 2006 Jan 16; 71(3 Pt B):897-908. PubMed ID: 17390837
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea.
    Gonorazky G, Guzzo MC, Abd-El-Haliem AM, Joosten MH, Laxalt AM.
    Mol Plant Pathol; 2016 Dec 16; 17(9):1354-1363. PubMed ID: 26868615
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit.
    Ji JY, Yang J, Zhang BW, Wang SR, Zhang GC, Lin LN.
    Pestic Biochem Physiol; 2020 Jun 16; 166():104581. PubMed ID: 32448427
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Screening and identification of antagonistic actinomycete LA-5 against Botrytis cinerea.
    Li PQ, Feng BZ, Li XX, Hao HY.
    Ying Yong Sheng Tai Xue Bao; 2018 Dec 16; 29(12):4172-4180. PubMed ID: 30584746
    [Abstract] [Full Text] [Related]

  • 40. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3beta-hydroxy-kaurenoic acid.
    Cotoras M, Folch C, Mendoza L.
    J Agric Food Chem; 2004 May 19; 52(10):2821-6. PubMed ID: 15137820
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.