These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Acclimation of shoot and needle morphology and photosynthesis of two Picea species to differences in soil nutrient availability. Ishii H, Ooishi M, Maruyama Y, Koike T. Tree Physiol; 2003 May; 23(7):453-61. PubMed ID: 12670799 [Abstract] [Full Text] [Related]
3. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Ishii H, Kitaoka S, Fujisaki T, Maruyama Y, Koike T. Tree Physiol; 2007 Nov; 27(11):1595-605. PubMed ID: 17669749 [Abstract] [Full Text] [Related]
4. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light. Ishii H, Hamada Y, Utsugi H. Tree Physiol; 2012 Oct; 32(10):1227-36. PubMed ID: 23077118 [Abstract] [Full Text] [Related]
5. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Köstner B, Falge E, Tenhunen JD. Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028 [Abstract] [Full Text] [Related]
6. Importance of needle age and shoot structure on canopy net photosynthesis of balsam fir (Abies balsamea): a spatially inexplicit modeling analysis. Bernier PY, Raulier F, Stenberg P, Ung CH. Tree Physiol; 2001 Aug; 21(12-13):815-30. PubMed ID: 11498329 [Abstract] [Full Text] [Related]
8. Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy. Stenberg P, Palmroth S, Bond BJ, Sprugel DG, Smolander H. Tree Physiol; 2001 Aug; 21(12-13):805-14. PubMed ID: 11498328 [Abstract] [Full Text] [Related]
9. How is light interception efficiency related to shoot structure in tall canopy species? Osada N, Hiura T. Oecologia; 2017 Sep; 185(1):29-41. PubMed ID: 28801737 [Abstract] [Full Text] [Related]
10. Light interception and partitioning between shoots in apple cultivars influenced by training. Stephan J, Sinoquet H, Donès N, Haddad N, Talhouk S, Lauri PE. Tree Physiol; 2008 Mar; 28(3):331-42. PubMed ID: 18171657 [Abstract] [Full Text] [Related]
11. Why does needle photosynthesis decline with tree height in Norway spruce? Räim O, Kaurilind E, Hallik L, Merilo E. Plant Biol (Stuttg); 2012 Mar; 14(2):306-14. PubMed ID: 21974690 [Abstract] [Full Text] [Related]
12. Variation in the ratio of shoot silhouette area to needle area in fertilized and unfertilized Norway spruce trees. Stenberg P, Linder S, Smolander H. Tree Physiol; 1995 Nov; 15(11):705-12. PubMed ID: 14965988 [Abstract] [Full Text] [Related]
13. Constraints on light interception efficiency due to shoot architecture in broad-leaved Nothofagus species. Niinemets U, Cescatti A, Christian R. Tree Physiol; 2004 Jun; 24(6):617-30. PubMed ID: 15059762 [Abstract] [Full Text] [Related]
14. Shoot structure, light interception, and distribution of nitrogen in an Abies amabilis canopy. Stenberg P, Smolander H, Sprugel D, Smolander S. Tree Physiol; 1998 Nov; 18(11):759-767. PubMed ID: 12651410 [Abstract] [Full Text] [Related]
15. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production. Ishii H, Ford ED, Boscolo ME, Manriquez AC, Wilson ME, Hinckley TM. Tree Physiol; 2002 Jan; 22(1):31-40. PubMed ID: 11772553 [Abstract] [Full Text] [Related]
16. Atmospheric carbon dioxide concentration, nitrogen availability, temperature and the photosynthetic capacity of current-year Norway spruce shoots. Roberntz P. Tree Physiol; 2001 Aug; 21(12-13):931-40. PubMed ID: 11498340 [Abstract] [Full Text] [Related]
17. Effects of light on shoot geometry and needle morphology in Abies amabilis. Sprugel DG, Brooks JR, Hinckley TM. Tree Physiol; 1996 Aug; 16(1_2):91-98. PubMed ID: 14871751 [Abstract] [Full Text] [Related]
18. Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Stenberg P. Tree Physiol; 1996 Aug; 16(1_2):99-108. PubMed ID: 14871752 [Abstract] [Full Text] [Related]
19. Physiology and growth of advance Picea rubens and Abies balsamea regeneration following different canopy openings. Dumais D, Prévost M. Tree Physiol; 2014 Feb; 34(2):194-204. PubMed ID: 24443326 [Abstract] [Full Text] [Related]
20. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Niinemets U, Ellsworth DS, Lukjanova A, Tobias M. Tree Physiol; 2001 Nov; 21(17):1231-44. PubMed ID: 11696411 [Abstract] [Full Text] [Related] Page: [Next] [New Search]