These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
285 related items for PubMed ID: 12414709
1. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence. VanScyoc WS, Sorensen BR, Rusinova E, Laws WR, Ross JB, Shea MA. Biophys J; 2002 Nov; 83(5):2767-80. PubMed ID: 12414709 [Abstract] [Full Text] [Related]
2. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels. VanScyoc WS, Newman RA, Sorensen BR, Shea MA. Biochemistry; 2006 Dec 05; 45(48):14311-24. PubMed ID: 17128970 [Abstract] [Full Text] [Related]
3. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. VanScyoc WS, Shea MA. Protein Sci; 2001 Sep 05; 10(9):1758-68. PubMed ID: 11514666 [Abstract] [Full Text] [Related]
4. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II. Newman RA, Van Scyoc WS, Sorensen BR, Jaren OR, Shea MA. Proteins; 2008 Jun 05; 71(4):1792-812. PubMed ID: 18175310 [Abstract] [Full Text] [Related]
5. The neuronal voltage-dependent sodium channel type II IQ motif lowers the calcium affinity of the C-domain of calmodulin. Theoharis NT, Sorensen BR, Theisen-Toupal J, Shea MA. Biochemistry; 2008 Jan 08; 47(1):112-23. PubMed ID: 18067319 [Abstract] [Full Text] [Related]
6. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Sorensen BR, Shea MA. Biophys J; 1996 Dec 08; 71(6):3407-20. PubMed ID: 8968610 [Abstract] [Full Text] [Related]
7. Interactions between domains of apo calmodulin alter calcium binding and stability. Sorensen BR, Shea MA. Biochemistry; 1998 Mar 24; 37(12):4244-53. PubMed ID: 9521747 [Abstract] [Full Text] [Related]
8. Thermodynamics and conformational change governing domain-domain interactions of calmodulin. O'Donnell SE, Newman RA, Witt TJ, Hultman R, Froehlig JR, Christensen AP, Shea MA. Methods Enzymol; 2009 Mar 24; 466():503-26. PubMed ID: 21609874 [Abstract] [Full Text] [Related]
9. Calcium occupancy of N-terminal sites within calmodulin induces inhibition of the ryanodine receptor calcium release channel. Boschek CB, Jones TE, Squier TC, Bigelow DJ. Biochemistry; 2007 Sep 18; 46(37):10621-8. PubMed ID: 17713923 [Abstract] [Full Text] [Related]
10. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching. Jaren OR, Harmon S, Chen AF, Shea MA. Biochemistry; 2000 Jun 13; 39(23):6881-90. PubMed ID: 10841769 [Abstract] [Full Text] [Related]
11. Disruption of interdomain interactions via partial calcium occupancy of calmodulin. Boschek CB, Squier TC, Bigelow DJ. Biochemistry; 2007 Apr 17; 46(15):4580-8. PubMed ID: 17378588 [Abstract] [Full Text] [Related]
12. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile. Jiang J, Zhou Y, Zou J, Chen Y, Patel P, Yang JJ, Balog EM. Biochem J; 2010 Nov 15; 432(1):89-99. PubMed ID: 20815817 [Abstract] [Full Text] [Related]
13. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII. Evans TI, Shea MA. Proteins; 2009 Jul 15; 76(1):47-61. PubMed ID: 19089983 [Abstract] [Full Text] [Related]
14. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Chabbert M, Lukas TJ, Watterson DM, Axelsen PH, Prendergast FG. Biochemistry; 1991 Jul 30; 30(30):7615-30. PubMed ID: 1854758 [Abstract] [Full Text] [Related]
15. Paramecium calmodulin mutants defective in ion channel regulation associate with melittin in the absence of calcium but require it for tertiary collapse. Sorensen BR, Eppel JT, Shea MA. Biochemistry; 2001 Jan 30; 40(4):896-903. PubMed ID: 11170410 [Abstract] [Full Text] [Related]
16. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins. Yao Y, Squier TC. Biochemistry; 1996 May 28; 35(21):6815-27. PubMed ID: 8639633 [Abstract] [Full Text] [Related]
18. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase. Chen B, Mayer MU, Squier TC. Biochemistry; 2005 Mar 29; 44(12):4737-47. PubMed ID: 15779900 [Abstract] [Full Text] [Related]
19. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin. Shea MA, Sorensen BR, Pedigo S, Verhoeven AS. Methods Enzymol; 2000 Mar 29; 323():254-301. PubMed ID: 10944756 [Abstract] [Full Text] [Related]
20. Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J. Biochemistry; 2000 Dec 26; 39(51):15920-31. PubMed ID: 11123919 [Abstract] [Full Text] [Related] Page: [Next] [New Search]