These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


878 related items for PubMed ID: 12424275

  • 21. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A, van Maarseveen JT, Scarfone E, Ulfendahl M, Flock B, Flock A.
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [Abstract] [Full Text] [Related]

  • 22. Probing hair cell's mechano-transduction using two-tone suppression measurements.
    Zhou W, Nam JH.
    Sci Rep; 2019 Mar 15; 9(1):4626. PubMed ID: 30874606
    [Abstract] [Full Text] [Related]

  • 23. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R.
    Audiol Neurootol; 2002 Mar 15; 7(1):17-20. PubMed ID: 11914520
    [Abstract] [Full Text] [Related]

  • 24. Minimal basilar membrane motion in low-frequency hearing.
    Warren RL, Ramamoorthy S, Ciganović N, Zhang Y, Wilson TM, Petrie T, Wang RK, Jacques SL, Reichenbach T, Nuttall AL, Fridberger A.
    Proc Natl Acad Sci U S A; 2016 Jul 26; 113(30):E4304-10. PubMed ID: 27407145
    [Abstract] [Full Text] [Related]

  • 25. Low-frequency modulation of inner hair cell and organ of Corti responses in the guinea pig cochlea.
    Cheatham MA, Dallos P.
    Hear Res; 1997 Jun 26; 108(1-2):191-212. PubMed ID: 9213131
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW, Bohne BA, Lee SC, Salt AN.
    Hear Res; 2007 Mar 26; 225(1-2):128-38. PubMed ID: 17300889
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN.
    J Acoust Soc Am; 2009 Apr 26; 125(4):2129-45. PubMed ID: 19354389
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
    He W, Burwood G, Fridberger A, Nuttall AL, Ren T.
    Hear Res; 2022 Sep 15; 423():108407. PubMed ID: 34922772
    [Abstract] [Full Text] [Related]

  • 40. Cochlear electrically evoked emissions modulated by mechanical transduction channels.
    Yates GK, Kirk DL.
    J Neurosci; 1998 Mar 15; 18(6):1996-2003. PubMed ID: 9482786
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 44.