These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 12435583

  • 1. Homocysteine promotes the LDL oxidase activity of ceruloplasmin.
    Exner M, Hermann M, Hofbauer R, Hartmann B, Kapiotis S, Gmeiner B.
    FEBS Lett; 2002 Nov 20; 531(3):402-6. PubMed ID: 12435583
    [Abstract] [Full Text] [Related]

  • 2. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant.
    Mukhopadhyay CK, Fox PL.
    Biochemistry; 1998 Oct 06; 37(40):14222-9. PubMed ID: 9760260
    [Abstract] [Full Text] [Related]

  • 3. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
    Burkitt MJ.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):117-35. PubMed ID: 11566034
    [Abstract] [Full Text] [Related]

  • 4. Ceruloplasmin as low-density lipoprotein oxidase: activation by ascorbate and dehydroascorbate.
    Feichtenhofer S, Fabjan JS, Abuja PM.
    FEBS Lett; 2001 Jul 13; 501(1):42-6. PubMed ID: 11457453
    [Abstract] [Full Text] [Related]

  • 5. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein.
    Lynch SM, Frei B.
    Biochim Biophys Acta; 1997 Apr 01; 1345(2):215-21. PubMed ID: 9106501
    [Abstract] [Full Text] [Related]

  • 6. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces.
    Mukhopadhyay CK, Mazumder B, Lindley PF, Fox PL.
    Proc Natl Acad Sci U S A; 1997 Oct 14; 94(21):11546-51. PubMed ID: 9326646
    [Abstract] [Full Text] [Related]

  • 7. Ceruloplasmin and cardiovascular disease.
    Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK.
    Free Radic Biol Med; 2000 Jun 15; 28(12):1735-44. PubMed ID: 10946215
    [Abstract] [Full Text] [Related]

  • 8. Susceptibility of plasma low- and high-density lipoproteins to oxidation in patients with severe hyperhomocysteinemia.
    Córdoba-Porras A, Sánchez-Quesada JL, González-Sastre F, Ordóñez-Llanos J, Blanco-Vaca F.
    J Mol Med (Berl); 1996 Dec 15; 74(12):771-6. PubMed ID: 8974018
    [Abstract] [Full Text] [Related]

  • 9. Novel cell culture medium for use in oxidation experiments provides insights into mechanisms of endothelial cell-mediated oxidation of LDL.
    Dugas TR, Morel DW, Harrison EH.
    In Vitro Cell Dev Biol Anim; 2000 Oct 15; 36(9):571-7. PubMed ID: 11212142
    [Abstract] [Full Text] [Related]

  • 10. Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine.
    Pfanzagl B, Tribl F, Koller E, Möslinger T.
    Atherosclerosis; 2003 May 15; 168(1):39-48. PubMed ID: 12732385
    [Abstract] [Full Text] [Related]

  • 11. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL.
    Lynch SM, Frei B.
    J Biol Chem; 1995 Mar 10; 270(10):5158-63. PubMed ID: 7890625
    [Abstract] [Full Text] [Related]

  • 12. Reduction of Cu(II) by lipid hydroperoxides: implications for the copper-dependent oxidation of low-density lipoprotein.
    Patel RP, Svistunenko D, Wilson MT, Darley-Usmar VM.
    Biochem J; 1997 Mar 01; 322 ( Pt 2)(Pt 2):425-33. PubMed ID: 9065759
    [Abstract] [Full Text] [Related]

  • 13. The effect of HDL-bound and free PON1 on copper-induced LDL oxidation.
    Bayrak A, Bayrak T, Bodur E, Kılınç K, Demirpençe E.
    Chem Biol Interact; 2016 Sep 25; 257():141-6. PubMed ID: 27510818
    [Abstract] [Full Text] [Related]

  • 14. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells.
    Ehrenwald E, Fox PL.
    J Clin Invest; 1996 Feb 01; 97(3):884-90. PubMed ID: 8609249
    [Abstract] [Full Text] [Related]

  • 15. Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions.
    Kostevich VA, Sokolov AV, Grudinina NA, Zakharova ET, Samygina VR, Vasilyev VB.
    Biometals; 2015 Oct 01; 28(5):817-26. PubMed ID: 26091949
    [Abstract] [Full Text] [Related]

  • 16. Intact human ceruloplasmin oxidatively modifies low density lipoprotein.
    Ehrenwald E, Chisolm GM, Fox PL.
    J Clin Invest; 1994 Apr 01; 93(4):1493-501. PubMed ID: 8163654
    [Abstract] [Full Text] [Related]

  • 17. The dynamic reduction of Cu(II) to Cu(I) and not Cu(I) availability is a sufficient trigger for low density lipoprotein oxidation.
    Perugini C, Seccia M, Albano E, Bellomo G.
    Biochim Biophys Acta; 1997 Aug 16; 1347(2-3):191-8. PubMed ID: 9295163
    [Abstract] [Full Text] [Related]

  • 18. Copper, ceruloplasmin and oxidative stress in patients with advanced-stage endometriosis.
    Turgut A, Özler A, Görük NY, Tunc SY, Evliyaoglu O, Gül T.
    Eur Rev Med Pharmacol Sci; 2013 Jun 16; 17(11):1472-8. PubMed ID: 23771536
    [Abstract] [Full Text] [Related]

  • 19. Homocysteine from endothelial cells promotes LDL nitration and scavenger receptor uptake.
    Griffiths HR, Aldred S, Dale C, Nakano E, Kitas GD, Grant MG, Nugent D, Taiwo FA, Li L, Powers HJ.
    Free Radic Biol Med; 2006 Feb 01; 40(3):488-500. PubMed ID: 16443164
    [Abstract] [Full Text] [Related]

  • 20. Regulation of ceruloplasmin in human hepatic cells by redox active copper: identification of a novel AP-1 site in the ceruloplasmin gene.
    Das D, Tapryal N, Goswami SK, Fox PL, Mukhopadhyay CK.
    Biochem J; 2007 Feb 15; 402(1):135-41. PubMed ID: 17032174
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.