These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 12436304
21. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. González A, Hierro N, Poblet M, Mas A, Guillamón JM. Int J Food Microbiol; 2005 Jul 25; 102(3):295-304. PubMed ID: 16014297 [Abstract] [Full Text] [Related]
22. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus. Kataoka N, Matsutani M, Yakushi T, Matsushita K. Appl Environ Microbiol; 2015 May 15; 81(10):3552-60. PubMed ID: 25769838 [Abstract] [Full Text] [Related]
23. Gluconobacter japonicus sp. nov., an acetic acid bacterium in the Alphaproteobacteria. Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y. Int J Syst Evol Microbiol; 2009 Mar 15; 59(Pt 3):466-71. PubMed ID: 19244423 [Abstract] [Full Text] [Related]
24. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H. Appl Microbiol Biotechnol; 2005 Mar 15; 66(6):668-74. PubMed ID: 15735967 [Abstract] [Full Text] [Related]
25. Biotechnological production of D-glyceric acid and its application. Habe H, Fukuoka T, Kitamoto D, Sakaki K. Appl Microbiol Biotechnol; 2009 Sep 15; 84(3):445-52. PubMed ID: 19621222 [Abstract] [Full Text] [Related]
26. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Gullo M, Caggia C, De Vero L, Giudici P. Int J Food Microbiol; 2006 Feb 01; 106(2):209-12. PubMed ID: 16214251 [Abstract] [Full Text] [Related]
27. Role of botrytized grape micro-organisms in SO2 binding phenomena. Barbe JC, De Revel G, Joyeux A, Bertrand A, Lonvaud-Funel A. J Appl Microbiol; 2001 Jan 01; 90(1):34-42. PubMed ID: 11155120 [Abstract] [Full Text] [Related]
28. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H, Sahm H. J Mol Microbiol Biotechnol; 2009 Jan 01; 16(1-2):6-13. PubMed ID: 18957858 [Abstract] [Full Text] [Related]
29. Biotechnological applications of acetic acid bacteria. Raspor P, Goranovic D. Crit Rev Biotechnol; 2008 Jan 01; 28(2):101-24. PubMed ID: 18568850 [Abstract] [Full Text] [Related]
30. An easy cloning and expression vector system for Gluconobacter oxydans. Schleyer U, Bringer-Meyer S, Sahm H. Int J Food Microbiol; 2008 Jun 30; 125(1):91-5. PubMed ID: 17976848 [Abstract] [Full Text] [Related]
31. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans. Ano Y, Shinagawa E, Adachi O, Toyama H, Yakushi T, Matsushita K. Biosci Biotechnol Biochem; 2011 Jun 30; 75(3):586-9. PubMed ID: 21389606 [Abstract] [Full Text] [Related]
32. Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW. Appl Biochem Biotechnol; 2006 Jun 30; 129-132():705-15. PubMed ID: 16915681 [Abstract] [Full Text] [Related]
34. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H. Biotechnol J; 2006 May 30; 1(5):556-63. PubMed ID: 16892291 [Abstract] [Full Text] [Related]
38. Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Svitel J, Tkác J, Vostiar I, Navrátil M, Stefuca V, Bucko M, Gemeiner P. Biotechnol Lett; 2006 Dec 30; 28(24):2003-10. PubMed ID: 17072528 [Abstract] [Full Text] [Related]
39. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol. Habe H, Shimada Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Yakushi T, Matsushita K, Sakaki K. Biosci Biotechnol Biochem; 2010 Dec 30; 74(11):2330-2. PubMed ID: 21071844 [Abstract] [Full Text] [Related]
40. A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP+ Ratio via Metabolic Change. Matsumoto N, Hattori H, Matsutani M, Matayoshi C, Toyama H, Kataoka N, Yakushi T, Matsushita K. Appl Environ Microbiol; 2018 May 15; 84(10):. PubMed ID: 29549098 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]