These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 12444648

  • 1. S-nitrosocysteine and cystine from reaction of cysteine with nitrous acid. A kinetic investigation.
    Grossi L, Montevecchi PC.
    J Org Chem; 2002 Nov 29; 67(24):8625-30. PubMed ID: 12444648
    [Abstract] [Full Text] [Related]

  • 2. Nitrosation of cysteine and reduced glutathione by nitrite at physiological pH.
    Kuo WN, Kocis JM, Nibbs J.
    Front Biosci; 2003 May 01; 8():a62-9. PubMed ID: 12700032
    [Abstract] [Full Text] [Related]

  • 3. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide.
    Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E.
    Environ Sci Technol; 2003 Oct 15; 37(20):4635-41. PubMed ID: 14594372
    [Abstract] [Full Text] [Related]

  • 4. S-Transnitrosation reactions of hydrogen sulfide (H2S/HS-/S2-) with S-nitrosated cysteinyl thiols in phosphate buffer of pH 7.4: Results and review of the literature.
    Tsikas D, Böhmer A.
    Nitric Oxide; 2017 May 01; 65():22-36. PubMed ID: 28185882
    [Abstract] [Full Text] [Related]

  • 5. Detailed mechanistic investigation into the S-nitrosation of cysteamine.
    Morakinyo MK, Chipinda I, Hettick J, Siegel PD, Abramson J, Strongin R, Martincigh BS, Simoyi RH.
    Can J Chem; 2012 May 01; 9(9):724-738. PubMed ID: 26594054
    [Abstract] [Full Text] [Related]

  • 6. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction.
    Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC.
    Chem Res Toxicol; 1994 May 01; 7(4):519-25. PubMed ID: 7981416
    [Abstract] [Full Text] [Related]

  • 7. Kinetic study on the nitrosation of dibenzylamine in a model system.
    Ayala NL, Fiddler W, Gates RA, Pensabene JW.
    Food Chem Toxicol; 1994 Nov 01; 32(11):1015-9. PubMed ID: 7959455
    [Abstract] [Full Text] [Related]

  • 8. Nitroso group transfer in s-nitrosocysteine: evidence of a new decomposition pathway for nitrosothiols.
    Adam C, García-Río L, Leis JR, Ribeiro L.
    J Org Chem; 2005 Aug 05; 70(16):6353-61. PubMed ID: 16050697
    [Abstract] [Full Text] [Related]

  • 9. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P, Ashby MT.
    J Am Chem Soc; 2007 Nov 14; 129(45):14082-91. PubMed ID: 17939659
    [Abstract] [Full Text] [Related]

  • 10. The mechanism of transmembrane S-nitrosothiol transport.
    Zhang Y, Hogg N.
    Proc Natl Acad Sci U S A; 2004 May 25; 101(21):7891-6. PubMed ID: 15148403
    [Abstract] [Full Text] [Related]

  • 11. The mechanisms of S-nitrosothiol decomposition catalyzed by iron.
    Vanin AF, Papina AA, Serezhenkov VA, Koppenol WH.
    Nitric Oxide; 2004 Mar 25; 10(2):60-73. PubMed ID: 15135359
    [Abstract] [Full Text] [Related]

  • 12. Mechanisms of NO release by N1-nitrosomelatonin: nucleophilic attack versus reducing pathways.
    De Biase PM, Turjanski AG, Estrin DA, Doctorovich F.
    J Org Chem; 2005 Jul 22; 70(15):5790-8. PubMed ID: 16018670
    [Abstract] [Full Text] [Related]

  • 13. Catalytic and direct oxidation of cysteine by octacyanomolybdate(V).
    Hung M, Stanbury DM.
    Inorg Chem; 2005 May 16; 44(10):3541-50. PubMed ID: 15877437
    [Abstract] [Full Text] [Related]

  • 14. Direct oxidation of L-cysteine by [FeIII(bpy)2(CN)2]+ and [FeIII(bpy)(CN)4]-.
    Wang X, Stanbury DM.
    Inorg Chem; 2008 Feb 04; 47(3):1224-36. PubMed ID: 18177037
    [Abstract] [Full Text] [Related]

  • 15. Gas-phase fragmentation of long-lived cysteine radical cations formed via NO loss from protonated S-nitrosocysteine.
    Ryzhov V, Lam AK, O'Hair RA.
    J Am Soc Mass Spectrom; 2009 Jun 04; 20(6):985-95. PubMed ID: 19217308
    [Abstract] [Full Text] [Related]

  • 16. Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester.
    Nagy P, Ashby MT.
    Chem Res Toxicol; 2007 Sep 04; 20(9):1364-72. PubMed ID: 17764150
    [Abstract] [Full Text] [Related]

  • 17. Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine.
    Gu J, Lewis RS.
    Ann Biomed Eng; 2007 Sep 04; 35(9):1554-60. PubMed ID: 17510805
    [Abstract] [Full Text] [Related]

  • 18. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution.
    Vanin AF, Muller B, Alencar JL, Lobysheva II, Nepveu F, Stoclet JC.
    Nitric Oxide; 2002 Nov 04; 7(3):194-209. PubMed ID: 12381416
    [Abstract] [Full Text] [Related]

  • 19. Post-translational modification in the gas phase: mechanism of cysteine S-nitrosylation via ion-molecule reactions.
    Osburn S, O'Hair RA, Black SM, Ryzhov V.
    Rapid Commun Mass Spectrom; 2011 Nov 15; 25(21):3216-22. PubMed ID: 22006383
    [Abstract] [Full Text] [Related]

  • 20. Pt-NiCo nanostructures with facilitated electrocatalytic activities for sensitive determination of intracellular thiols with long-term stability.
    Zhang F, Wen M, Cheng M, Liu D, Zhu A, Tian Y.
    Chemistry; 2010 Sep 24; 16(36):11115-20. PubMed ID: 20687145
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.