These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309, and tryptophan 317 located at subsites 1 and 2 in glucoamylase from Aspergillus niger. Frandsen TP, Christensen T, Stoffer B, Lehmbeck J, Dupont C, Honzatko RB, Svensson B. Biochemistry; 1995 Aug 15; 34(32):10162-9. PubMed ID: 7640270 [Abstract] [Full Text] [Related]
5. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CS, Svensson B, Morris VJ, Williamson G. J Mol Biol; 2001 Nov 09; 313(5):1149-59. PubMed ID: 11700070 [Abstract] [Full Text] [Related]
6. Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Sugimoto H, Nakaura M, Kosuge Y, Imai K, Miyake H, Karita S, Tanaka A. Biosci Biotechnol Biochem; 2007 Jun 09; 71(6):1535-41. PubMed ID: 17587686 [Abstract] [Full Text] [Related]
7. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J, Christensen T, Frandsen TP, Mirgorodskaya E, McGuire KA, Driguez H, Roepstorff P, Sigurskjold BW, Svensson B. Biochemistry; 2001 Aug 07; 40(31):9336-46. PubMed ID: 11478902 [Abstract] [Full Text] [Related]
9. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Fierobe HP, Mirgorodskaya E, Frandsen TP, Roepstorff P, Svensson B. Protein Expr Purif; 1997 Mar 07; 9(2):159-70. PubMed ID: 9056481 [Abstract] [Full Text] [Related]
10. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Tanaka A, Karita S, Kosuge Y, Senoo K, Obata H, Kitamoto N. Biosci Biotechnol Biochem; 1998 Nov 07; 62(11):2127-32. PubMed ID: 9972233 [Abstract] [Full Text] [Related]
11. Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. Jørgensen AD, Nøhr J, Kastrup JS, Gajhede M, Sigurskjold BW, Sauer J, Svergun DI, Svensson B, Vestergaard B. J Biol Chem; 2008 May 23; 283(21):14772-80. PubMed ID: 18378674 [Abstract] [Full Text] [Related]
12. Some details of the reaction mechanism of glucoamylase from Aspergillus niger--kinetic and structural studies on Trp52-->Phe and Trp317-->Phe mutants. Christensen T, Stoffer BB, Svensson B, Christensen U. Eur J Biochem; 1997 Dec 15; 250(3):638-45. PubMed ID: 9461285 [Abstract] [Full Text] [Related]
13. O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Williamson G, Belshaw NJ, Noel TR, Ring SG, Williamson MP. Eur J Biochem; 1992 Jul 15; 207(2):661-70. PubMed ID: 1633817 [Abstract] [Full Text] [Related]
14. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Sierks MR, Svensson B. Biochemistry; 2000 Jul 25; 39(29):8585-92. PubMed ID: 10913265 [Abstract] [Full Text] [Related]
15. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Nielsen BR, Lehmbeck J, Frandsen TP. Protein Expr Purif; 2002 Oct 25; 26(1):1-8. PubMed ID: 12356463 [Abstract] [Full Text] [Related]
16. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW, Svensson B, Williamson G, Driguez H. Eur J Biochem; 1994 Oct 01; 225(1):133-41. PubMed ID: 7925430 [Abstract] [Full Text] [Related]
17. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis. Frandsen TP, Stoffer BB, Palcic MM, Hof S, Svensson B. J Mol Biol; 1996 Oct 18; 263(1):79-89. PubMed ID: 8890914 [Abstract] [Full Text] [Related]
18. Residual structures in the unfolded state of starch-binding domain of glucoamylase revealed by near-UV circular dichroism and protein engineering techniques. Ota C, Ikeguchi M, Tanaka A, Hamada D. Biochim Biophys Acta; 2016 Oct 18; 1864(10):1464-72. PubMed ID: 27164491 [Abstract] [Full Text] [Related]
19. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Berland CR, Sigurskjold BW, Stoffer B, Frandsen TP, Svensson B. Biochemistry; 1995 Aug 15; 34(32):10153-61. PubMed ID: 7640269 [Abstract] [Full Text] [Related]
20. Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori. Sierks MR, Ford C, Reilly PJ, Svensson B. Protein Eng; 1990 Jan 15; 3(3):193-8. PubMed ID: 1970434 [Abstract] [Full Text] [Related] Page: [Next] [New Search]