These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 124551
1. Calcium transport in human erythrocytes. Separation and reconstitution of high and low Ca affinity (Mg mca)-AT Pase activities in membranes prepared at low ionic strength. Quist EE, Roufogalis BD. Arch Biochem Biophys; 1975 May; 168(1):240-51. PubMed ID: 124551 [No Abstract] [Full Text] [Related]
6. Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes. Weiner ML, Lee KS. J Gen Physiol; 1972 Apr; 59(4):462-75. PubMed ID: 4260495 [Abstract] [Full Text] [Related]
8. The effects of Ca2+ on ATPase and phosphatase activities of erythrocyte membranes. Rega AF, Richards DE, Garrahan PJ. Ann N Y Acad Sci; 1974 Apr; 242(0):317-23. PubMed ID: 4372927 [No Abstract] [Full Text] [Related]
9. Calcium ion transport by pig erythrocyte membrane vesicles. Buckley JT. Biochem J; 1974 Sep; 142(3):521-6. PubMed ID: 4282703 [Abstract] [Full Text] [Related]
11. Effects of La+++, Mn++ and ruthenium red on Mg-Ca-ATPase activity and ATP-dependent Ca-binding of the synaptic plasma membrane. Ichida S, Kuo CH, Matsuda T, Yoshida H. Jpn J Pharmacol; 1976 Feb; (1):39-43. PubMed ID: 131208 [Abstract] [Full Text] [Related]
12. Ca-2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte. Katz S, Blostein R. Biochim Biophys Acta; 1975 May 06; 389(2):314-24. PubMed ID: 124591 [Abstract] [Full Text] [Related]
13. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. Buckley JT, Hawthorne JN. J Biol Chem; 1972 Nov 25; 247(22):7218-23. PubMed ID: 4344642 [No Abstract] [Full Text] [Related]
14. The effects of an antiserum to Na+, K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme. Glynn IM, Karlish SJ, Cavieres JD, Ellory JC, Lew VL, Jorgensen PL. Ann N Y Acad Sci; 1974 Nov 25; 242(0):357-71. PubMed ID: 4279595 [No Abstract] [Full Text] [Related]
15. The nature of phospholipase C from Acinetobacter calcoaceticus: effects on whole red cells and red cell membranes. Lehmann V. Acta Pathol Microbiol Scand B Microbiol Immunol; 1973 Aug 25; 81(4):419-26. PubMed ID: 4271908 [No Abstract] [Full Text] [Related]
16. Ligand-induced conformational changes in the (Mg 2+ + Ca 2+ )-dependent ATPase of red cell membranes. Bond GH. Biochim Biophys Acta; 1972 Nov 02; 288(2):423-33. PubMed ID: 4263663 [No Abstract] [Full Text] [Related]
17. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane. Bond GH, Green JW. Biochim Biophys Acta; 1971 Aug 13; 241(2):393-8. PubMed ID: 4258480 [No Abstract] [Full Text] [Related]
18. Changes in the Ca2+-transport processes of red cells during cold storage in ACD. Szász I, Sarkadi B, Gárdos G. Br J Haematol; 1978 Aug 13; 39(4):559-68. PubMed ID: 151553 [No Abstract] [Full Text] [Related]
19. The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells. Schatzmann HJ, Tschabold M. Experientia; 1971 Jan 15; 27(1):59-61. PubMed ID: 4251422 [No Abstract] [Full Text] [Related]
20. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Sarkadi B, Szász I, Gerlóczy A, Gárdos G. Biochim Biophys Acta; 1977 Jan 04; 464(1):93-107. PubMed ID: 137747 [Abstract] [Full Text] [Related] Page: [Next] [New Search]