These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 12473115

  • 21. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells.
    Nagahama M, Hayashi S, Morimitsu S, Sakurai J.
    J Biol Chem; 2003 Sep 19; 278(38):36934-41. PubMed ID: 12851396
    [Abstract] [Full Text] [Related]

  • 22. Reduced sensitivity of Niemann-Pick C1-deficient cells to theta-toxin (perfringolysin O): sequestration of toxin to raft-enriched membrane vesicles.
    Ohsaki Y, Sugimoto Y, Suzuki M, Kaidoh T, Shimada Y, Ohno-Iwashita Y, Davies JP, Ioannou YA, Ohno K, Ninomiya H.
    Histochem Cell Biol; 2004 Apr 19; 121(4):263-72. PubMed ID: 15069562
    [Abstract] [Full Text] [Related]

  • 23. Gamma-secretase activity is present in rafts but is not cholesterol-dependent.
    Wada S, Morishima-Kawashima M, Qi Y, Misono H, Shimada Y, Ohno-Iwashita Y, Ihara Y.
    Biochemistry; 2003 Dec 02; 42(47):13977-86. PubMed ID: 14636066
    [Abstract] [Full Text] [Related]

  • 24. Membrane disorganization induced by perfringolysin O (theta-toxin) of Clostridium perfringens--effect of toxin binding and self-assembly on liposomes.
    Iwamoto M, Nakamura M, Mitsui K, Ando S, Ohno-Iwashita Y.
    Biochim Biophys Acta; 1993 Nov 21; 1153(1):89-96. PubMed ID: 8241254
    [Abstract] [Full Text] [Related]

  • 25. Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding.
    Johnson BB, Moe PC, Wang D, Rossi K, Trigatti BL, Heuck AP.
    Biochemistry; 2012 Apr 24; 51(16):3373-82. PubMed ID: 22482748
    [Abstract] [Full Text] [Related]

  • 26. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization.
    Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M.
    Subcell Biochem; 2010 Apr 24; 51():597-621. PubMed ID: 20213560
    [Abstract] [Full Text] [Related]

  • 27. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G, Sharom FJ.
    Biochem J; 2004 May 15; 380(Pt 1):219-30. PubMed ID: 14769131
    [Abstract] [Full Text] [Related]

  • 28. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy.
    Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK.
    Biochemistry; 1998 Oct 13; 37(41):14563-74. PubMed ID: 9772185
    [Abstract] [Full Text] [Related]

  • 29. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains.
    Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T.
    J Lipid Res; 2013 Oct 13; 54(10):2933-43. PubMed ID: 23918047
    [Abstract] [Full Text] [Related]

  • 30. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation.
    Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P.
    Mol Cell Biol; 2001 Dec 13; 21(24):8318-28. PubMed ID: 11713268
    [Abstract] [Full Text] [Related]

  • 31. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD, Johnson AE, London E.
    J Biol Chem; 2008 Feb 22; 283(8):4632-42. PubMed ID: 18089559
    [Abstract] [Full Text] [Related]

  • 32. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts.
    Waheed AA, Jones TL.
    J Biol Chem; 2002 Sep 06; 277(36):32409-12. PubMed ID: 12117999
    [Abstract] [Full Text] [Related]

  • 33. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L, Harris JR, Sarraf N, Palmer M.
    Biochem Cell Biol; 2013 Apr 06; 91(2):59-66. PubMed ID: 23527633
    [Abstract] [Full Text] [Related]

  • 34. Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes.
    Heuck AP, Hotze EM, Tweten RK, Johnson AE.
    Mol Cell; 2000 Nov 06; 6(5):1233-42. PubMed ID: 11106760
    [Abstract] [Full Text] [Related]

  • 35. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC, Heuck AP.
    Biochemistry; 2010 Nov 09; 49(44):9498-507. PubMed ID: 20886855
    [Abstract] [Full Text] [Related]

  • 36. Calcium enhances binding of Clostridium perfringens epsilon toxin to sulfatide.
    Gil C, Dorca-Arévalo J, Blasi J.
    Biochim Biophys Acta Biomembr; 2019 Jan 09; 1861(1):161-169. PubMed ID: 30463699
    [Abstract] [Full Text] [Related]

  • 37. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.
    Maekawa M, Yang Y, Fairn GD.
    Toxins (Basel); 2016 Mar 08; 8(3):. PubMed ID: 27005662
    [Abstract] [Full Text] [Related]

  • 38. Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product.
    Tweten RK.
    Infect Immun; 1988 Dec 08; 56(12):3228-34. PubMed ID: 2903127
    [Abstract] [Full Text] [Related]

  • 39. Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin.
    Hale ML, Marvaud JC, Popoff MR, Stiles BG.
    Infect Immun; 2004 Apr 08; 72(4):2186-93. PubMed ID: 15039342
    [Abstract] [Full Text] [Related]

  • 40. Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells.
    Kim J, Adam RM, Solomon KR, Freeman MR.
    Endocrinology; 2004 Feb 08; 145(2):613-9. PubMed ID: 14563701
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.