These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J, Reizer J, Fischer C, Galinier A, Saier MH, Steinmetz M. J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [Abstract] [Full Text] [Related]
8. Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. Weaver CA, Chen YM, Burne RA. Microbiology (Reading); 2000 May; 146 ( Pt 5)():1179-1185. PubMed ID: 10832646 [Abstract] [Full Text] [Related]
9. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius. Plamondon P, Brochu D, Thomas S, Fradette J, Gauthier L, Vaillancourt K, Buckley N, Frenette M, Vadeboncoeur C. J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156 [Abstract] [Full Text] [Related]
10. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Gonzalez CF, Stonestrom AJ, Lorca GL, Saier MH. Biochemistry; 2005 Jan 18; 44(2):598-608. PubMed ID: 15641785 [Abstract] [Full Text] [Related]
12. The N-terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Chauvin F, Fomenkov A, Johnson CR, Roseman S. Proc Natl Acad Sci U S A; 1996 Jul 09; 93(14):7028-31. PubMed ID: 8692938 [Abstract] [Full Text] [Related]
13. Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. Rabus R, Reizer J, Paulsen I, Saier MH. J Biol Chem; 1999 Sep 10; 274(37):26185-91. PubMed ID: 10473571 [Abstract] [Full Text] [Related]
14. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW. Proc Natl Acad Sci U S A; 1995 Dec 05; 92(25):11583-7. PubMed ID: 8524808 [Abstract] [Full Text] [Related]
15. The roles of HPr and FPr in the utilization of fructose by Escherichia coli. Kornberg H. FEBS Lett; 1986 Jan 01; 194(1):12-5. PubMed ID: 3510127 [Abstract] [Full Text] [Related]
16. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. Saier MH, Novotny MJ, Comeau-Fuhrman D, Osumi T, Desai JD. J Bacteriol; 1983 Sep 01; 155(3):1351-7. PubMed ID: 6350268 [Abstract] [Full Text] [Related]
17. Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. Geerse RH, Ruig CR, Schuitema AR, Postma PW. Mol Gen Genet; 1986 Jun 01; 203(3):435-44. PubMed ID: 3528748 [Abstract] [Full Text] [Related]
19. Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIImannose, IIIfructose, IIIglucitol, and the phosphorylation of enzyme IImannitol and enzyme IIN-acetylglucosamine. Waygood EB, Mattoo RL, Peri KG. J Cell Biochem; 1984 Jun 01; 25(3):139-59. PubMed ID: 6434550 [Abstract] [Full Text] [Related]
20. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. Postma PW, Epstein W, Schuitema AR, Nelson SO. J Bacteriol; 1984 Apr 01; 158(1):351-3. PubMed ID: 6325396 [Abstract] [Full Text] [Related] Page: [Next] [New Search]