These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 12484764
1. 11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. Sugihara M, Buss V, Entel P, Elstner M, Frauenheim T. Biochemistry; 2002 Dec 24; 41(51):15259-66. PubMed ID: 12484764 [Abstract] [Full Text] [Related]
2. The role of the beta-ionone ring in the photochemical reaction of rhodopsin. Send R, Sundholm D. J Phys Chem A; 2007 Jan 11; 111(1):27-33. PubMed ID: 17201384 [Abstract] [Full Text] [Related]
3. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. Kubli-Garfias C, Salazar-Salinas K, Perez-Angel EC, Seminario JM. J Mol Model; 2011 Oct 11; 17(10):2539-47. PubMed ID: 21207087 [Abstract] [Full Text] [Related]
6. Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. Röhrig UF, Guidoni L, Rothlisberger U. Biochemistry; 2002 Sep 03; 41(35):10799-809. PubMed ID: 12196019 [Abstract] [Full Text] [Related]
7. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. Ahuja S, Eilers M, Hirshfeld A, Yan EC, Ziliox M, Sakmar TP, Sheves M, Smith SO. J Am Chem Soc; 2009 Oct 28; 131(42):15160-9. PubMed ID: 19795853 [Abstract] [Full Text] [Related]
8. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR, Einterz CM, Knapp HM, Murray LP. Biophys J; 1988 Mar 28; 53(3):367-85. PubMed ID: 2964878 [Abstract] [Full Text] [Related]
10. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal. Chung WC, Nanbu S, Ishida T. J Phys Chem A; 2010 Aug 19; 114(32):8190-201. PubMed ID: 20666503 [Abstract] [Full Text] [Related]
11. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. J Mol Biol; 2004 Sep 10; 342(2):571-83. PubMed ID: 15327956 [Abstract] [Full Text] [Related]
12. Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation. Zhu S, Brown MF, Feller SE. J Am Chem Soc; 2013 Jun 26; 135(25):9391-8. PubMed ID: 23701524 [Abstract] [Full Text] [Related]
13. Origin and consequences of steric strain in the rhodopsin binding pocket. Sugihara M, Hufen J, Buss V. Biochemistry; 2006 Jan 24; 45(3):801-10. PubMed ID: 16411756 [Abstract] [Full Text] [Related]
14. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin. Matsumoto H, Yoshizawa T. Photochem Photobiol; 2008 Jan 24; 84(4):985-9. PubMed ID: 18399914 [Abstract] [Full Text] [Related]
15. A molecular spring for vision. Röhrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U. J Am Chem Soc; 2004 Dec 01; 126(47):15328-9. PubMed ID: 15563129 [Abstract] [Full Text] [Related]
16. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. Smith SO, Lugtenburg J, Mathies RA. J Membr Biol; 1985 Dec 01; 85(2):95-109. PubMed ID: 4009698 [Abstract] [Full Text] [Related]
18. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base. Parusel AB, Pohorille A. J Photochem Photobiol B; 2001 Dec 01; 65(1):13-21. PubMed ID: 11748000 [Abstract] [Full Text] [Related]
19. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal. Tachikawa H, Iyama T. J Photochem Photobiol B; 2004 Oct 25; 76(1-3):55-60. PubMed ID: 15488716 [Abstract] [Full Text] [Related]