These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
291 related items for PubMed ID: 12484769
1. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Kornyushyna O, Berges AM, Muller JG, Burrows CJ. Biochemistry; 2002 Dec 24; 41(51):15304-14. PubMed ID: 12484769 [Abstract] [Full Text] [Related]
2. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts. Kornyushyna O, Burrows CJ. Biochemistry; 2003 Nov 11; 42(44):13008-18. PubMed ID: 14596616 [Abstract] [Full Text] [Related]
3. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Leipold MD, Muller JG, Burrows CJ, David SS. Biochemistry; 2000 Dec 05; 39(48):14984-92. PubMed ID: 11101315 [Abstract] [Full Text] [Related]
4. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Alenko A, Fleming AM, Burrows CJ. Biochemistry; 2017 Sep 26; 56(38):5053-5064. PubMed ID: 28845978 [Abstract] [Full Text] [Related]
5. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Krishnamurthy N, Muller JG, Burrows CJ, David SS. Biochemistry; 2007 Aug 21; 46(33):9355-65. PubMed ID: 17655276 [Abstract] [Full Text] [Related]
6. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Duarte V, Muller JG, Burrows CJ. Nucleic Acids Res; 1999 Jan 15; 27(2):496-502. PubMed ID: 9862971 [Abstract] [Full Text] [Related]
7. Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals. Burrows CJ, Muller JG, Kornyushyna O, Luo W, Duarte V, Leipold MD, David SS. Environ Health Perspect; 2002 Oct 15; 110 Suppl 5(Suppl 5):713-7. PubMed ID: 12426118 [Abstract] [Full Text] [Related]
8. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Hazra TK, Muller JG, Manuel RC, Burrows CJ, Lloyd RS, Mitra S. Nucleic Acids Res; 2001 May 01; 29(9):1967-74. PubMed ID: 11328881 [Abstract] [Full Text] [Related]
9. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Leipold MD, Workman H, Muller JG, Burrows CJ, David SS. Biochemistry; 2003 Sep 30; 42(38):11373-81. PubMed ID: 14503888 [Abstract] [Full Text] [Related]
10. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Henderson PT, Delaney JC, Muller JG, Neeley WL, Tannenbaum SR, Burrows CJ, Essigmann JM. Biochemistry; 2003 Aug 12; 42(31):9257-62. PubMed ID: 12899611 [Abstract] [Full Text] [Related]
11. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing. Fleming AM, Muller JG, Dlouhy AC, Burrows CJ. J Am Chem Soc; 2012 Sep 12; 134(36):15091-102. PubMed ID: 22880947 [Abstract] [Full Text] [Related]
12. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. Hailer MK, Slade PG, Martin BD, Rosenquist TA, Sugden KD. DNA Repair (Amst); 2005 Jan 02; 4(1):41-50. PubMed ID: 15533836 [Abstract] [Full Text] [Related]
13. Effect of hyperoxidized guanine on DNA primer-template structures: spiroiminodihydantoin leads to strand slippage. Fenn D, Chi LM, Lam SL. FEBS Lett; 2008 Dec 24; 582(30):4169-75. PubMed ID: 19041867 [Abstract] [Full Text] [Related]
14. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions. Oh J, Fleming AM, Xu J, Chong J, Burrows CJ, Wang D. Proc Natl Acad Sci U S A; 2020 Apr 28; 117(17):9338-9348. PubMed ID: 32284409 [Abstract] [Full Text] [Related]
15. Impact of the oxidized guanine lesion spiroiminodihydantoin on the conformation and thermodynamic stability of a 15-mer DNA duplex. Chinyengetere F, Jamieson ER. Biochemistry; 2008 Feb 26; 47(8):2584-91. PubMed ID: 18281959 [Abstract] [Full Text] [Related]
16. In vitro ligation of oligodeoxynucleotides containing C8-oxidized purine lesions using bacteriophage T4 DNA ligase. Zhao X, Muller JG, Halasyam M, David SS, Burrows CJ. Biochemistry; 2007 Mar 27; 46(12):3734-44. PubMed ID: 17323928 [Abstract] [Full Text] [Related]
17. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. Biochemistry; 2017 Jun 20; 56(24):3008-3018. PubMed ID: 28514164 [Abstract] [Full Text] [Related]
18. Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine oxidation. White B, Tarun MC, Gathergood N, Rusling JF, Smyth MR. Mol Biosyst; 2005 Dec 20; 1(5-6):373-81. PubMed ID: 16881006 [Abstract] [Full Text] [Related]
19. Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. Verdolino V, Cammi R, Munk BH, Schlegel HB. J Phys Chem B; 2008 Dec 25; 112(51):16860-73. PubMed ID: 19049279 [Abstract] [Full Text] [Related]
20. Assessment of the genotoxic potential of nitric oxide-induced guanine lesions by in vitro reactions with Escherichia coli DNA polymerase I. Nakano T, Asagoshi K, Terato H, Suzuki T, Ide H. Mutagenesis; 2005 May 25; 20(3):209-16. PubMed ID: 15843389 [Abstract] [Full Text] [Related] Page: [Next] [New Search]