These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 12501425
1. Interaction between methanogenic and sulfate-reducing microorganisms during dechlorination of a high concentration of tetrachloroethylene. Cabirol N, Jacob F, Perrier J, Fouillet B, Chambon P. J Gen Appl Microbiol; 1998 Aug; 44(4):297-301. PubMed ID: 12501425 [Abstract] [Full Text] [Related]
2. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Fathepure BZ, Boyd SA. Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763 [Abstract] [Full Text] [Related]
3. Isolation of a methanogenic bacterium, Methanosarcina sp. strain FR, for its ability to degrade high concentration of perchloroethylene. Cabirol N, Villemur R, Perrier J, Jacob F, Fouillet B, Chambon P. Can J Microbiol; 1998 Dec; 44(12):1142-7. PubMed ID: 10383226 [Abstract] [Full Text] [Related]
4. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Raskin L, Rittmann BE, Stahl DA. Appl Environ Microbiol; 1996 Oct; 62(10):3847-57. PubMed ID: 16535428 [Abstract] [Full Text] [Related]
5. Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Aulenta F, Majone M, Verbo P, Tandoi V. Biodegradation; 2002 Oct; 13(6):411-24. PubMed ID: 12713133 [Abstract] [Full Text] [Related]
6. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. Yu S, Semprini L. J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006 [Abstract] [Full Text] [Related]
7. Kinetics of chlorinated ethylene dehalogenation under methanogenic conditions. Skeen RS, Gao J, Hooker BS. Biotechnol Bioeng; 1995 Dec 20; 48(6):659-66. PubMed ID: 18623535 [Abstract] [Full Text] [Related]
8. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes. Moreno-Medina CU, Poggi-Varaldo HM, Breton-Deval L, Rinderknecht-Seijas N. Environ Sci Pollut Res Int; 2017 Nov 20; 24(33):25534-25549. PubMed ID: 27498752 [Abstract] [Full Text] [Related]
9. Electron donor availability for microbial reductive processes following thermal treatment. Fletcher KE, Costanza J, Pennell KD, Löffler FE. Water Res; 2011 Dec 15; 45(20):6625-36. PubMed ID: 22048015 [Abstract] [Full Text] [Related]
10. Effect of specific inhibitors on the anaerobic reductive dechlorination of 2,4,6-trichlorophenol by a stable methanogenic consortium. El Fantroussi S, Ntibahezwa E, Thomas S, Naveau H, Agathos SN. Anaerobe; 1998 Aug 15; 4(4):197-203. PubMed ID: 16887642 [Abstract] [Full Text] [Related]
11. Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Berggren DR, Marshall IP, Azizian MF, Spormann AM, Semprini L. Environ Sci Technol; 2013 Feb 19; 47(4):1879-86. PubMed ID: 23316874 [Abstract] [Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS, Dhagat NN. Indian J Environ Health; 2001 Apr 19; 43(2):1-82. PubMed ID: 12397675 [Abstract] [Full Text] [Related]
13. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach. Ni Z, Smit M, Grotenhuis T, van Gaans P, Rijnaarts H. J Contam Hydrol; 2014 Aug 19; 164():209-18. PubMed ID: 24995946 [Abstract] [Full Text] [Related]
14. Reductive biotransformation of tetrachloroethene to ethene during anaerobic degradation of toluene: experimental evidence and kinetics. Shen H, Sewell GW. Environ Sci Technol; 2005 Dec 01; 39(23):9286-94. PubMed ID: 16382954 [Abstract] [Full Text] [Related]
15. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Kao CM, Chen YL, Chen SC, Yeh TY, Wu WS. Water Res; 2003 Dec 01; 37(20):4885-94. PubMed ID: 14604634 [Abstract] [Full Text] [Related]
16. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions. Lee CC, Doong RA. Environ Sci Technol; 2011 Mar 15; 45(6):2301-7. PubMed ID: 21341692 [Abstract] [Full Text] [Related]
17. Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Mao X, Polasko A, Alvarez-Cohen L. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159790 [Abstract] [Full Text] [Related]
18. Anaerobic bacteria that dechlorinate perchloroethene. Fathepure BZ, Nengu JP, Boyd SA. Appl Environ Microbiol; 1987 Nov 15; 53(11):2671-4. PubMed ID: 3426224 [Abstract] [Full Text] [Related]
19. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Mazur CS, Jones WJ. Environ Sci Technol; 2001 Dec 15; 35(24):4783-8. PubMed ID: 11775153 [Abstract] [Full Text] [Related]
20. Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Guiot SR, Cimpoia R, Kuhn R, Alaplantive A. Environ Sci Technol; 2008 Apr 15; 42(8):3011-7. PubMed ID: 18497159 [Abstract] [Full Text] [Related] Page: [Next] [New Search]