These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 12509867
1. Small-scale pattern formation in a cortical area of the embryonic chicken telencephalon. Kovjanic D, Redies C. J Comp Neurol; 2003 Feb 03; 456(2):95-104. PubMed ID: 12509867 [Abstract] [Full Text] [Related]
2. Cadherin expression coincides with birth dating patterns in patchy compartments of the developing chicken telencephalon. Heyers D, Kovjanic D, Redies C. J Comp Neurol; 2003 May 26; 460(2):155-66. PubMed ID: 12687681 [Abstract] [Full Text] [Related]
3. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. Redies C, Medina L, Puelles L. J Comp Neurol; 2001 Sep 24; 438(3):253-85. PubMed ID: 11550172 [Abstract] [Full Text] [Related]
4. Enc1 expression in the chick telencephalon at intermediate and late stages of development. García-Calero E, Puelles L. J Comp Neurol; 2009 Dec 10; 517(5):564-80. PubMed ID: 19824088 [Abstract] [Full Text] [Related]
5. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. Ding SL, Morecraft RJ, Van Hoesen GW. J Comp Neurol; 2003 Feb 03; 456(2):184-201. PubMed ID: 12509875 [Abstract] [Full Text] [Related]
6. Distributions of two chicken bombesin receptors, bombesin receptor subtype-3.5 (chBRS-3.5) and gastrin-releasing peptide receptor (chGRP-R) mRNAS in the chicken telencephalon. Maekawa F, Tsukahara S, Tanaka K, Ohki-Hamazaki H. Neuroscience; 2004 Feb 03; 125(3):569-82. PubMed ID: 15099671 [Abstract] [Full Text] [Related]
7. Development of cadherin-defined parasagittal subdivisions in the embryonic chicken cerebellum. Arndt K, Redies C. J Comp Neurol; 1998 Nov 23; 401(3):367-81. PubMed ID: 9811114 [Abstract] [Full Text] [Related]
8. Patch/matrix patterns of gray matter differentiation in the telencephalon of chicken and mouse. Redies C, Kovjanic D, Heyers D, Medina L, Hirano S, Suzuki ST, Puelles L. Brain Res Bull; 1998 Nov 23; 57(3-4):489-93. PubMed ID: 11923016 [Abstract] [Full Text] [Related]
9. Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. Suárez J, Dávila JC, Real MA, Guirado S, Medina L. J Comp Neurol; 2006 Aug 10; 497(5):751-71. PubMed ID: 16786551 [Abstract] [Full Text] [Related]
10. Reelin, radial fibers and cortical evolution: insights from comparative analysis of the mammalian and avian telencephalon. Nomura T, Hattori M, Osumi N. Dev Growth Differ; 2009 Apr 10; 51(3):287-97. PubMed ID: 19210541 [Abstract] [Full Text] [Related]
11. Internal structure of the nucleus rotundus revealed by mapping cadherin expression in the embryonic chicken visual system. Becker T, Redies C. J Comp Neurol; 2003 Dec 22; 467(4):536-48. PubMed ID: 14624487 [Abstract] [Full Text] [Related]
12. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ. Tsai HM, Garber BB, Larramendi LM. J Comp Neurol; 1981 May 10; 198(2):275-92. PubMed ID: 7240446 [Abstract] [Full Text] [Related]
13. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. Abellán A, Medina L. J Comp Neurol; 2009 Aug 01; 515(4):465-501. PubMed ID: 19459222 [Abstract] [Full Text] [Related]
14. Molecular cloning and expression pattern of the Fkbp25 gene during cerebral cortical neurogenesis. Mas C, Guimiot-Maloum I, Guimiot F, Khelfaoui M, Nepote V, Bourgeois F, Boda B, Levacher B, Galat A, Moalic JM, Simonneau M. Gene Expr Patterns; 2005 Jun 01; 5(5):577-85. PubMed ID: 15908283 [Abstract] [Full Text] [Related]
15. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. Blatt GJ, Pandya DN, Rosene DL. J Comp Neurol; 2003 Nov 10; 466(2):161-79. PubMed ID: 14528446 [Abstract] [Full Text] [Related]
16. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Pulvers JN, Huttner WB. Development; 2009 Jun 10; 136(11):1859-68. PubMed ID: 19403657 [Abstract] [Full Text] [Related]
17. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA. Development; 2004 Nov 10; 131(22):5639-47. PubMed ID: 15509764 [Abstract] [Full Text] [Related]
18. Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. Suzuki WA, Amaral DG. J Comp Neurol; 2003 Aug 11; 463(1):67-91. PubMed ID: 12811804 [Abstract] [Full Text] [Related]
19. Neural circuits revealed by axon tracing and mapping cadherin expression in the embryonic chicken cerebellum. Neudert F, Redies C. J Comp Neurol; 2008 Jul 20; 509(3):283-301. PubMed ID: 18478577 [Abstract] [Full Text] [Related]
20. Expression analysis of Sulf1 in the chick forebrain at early and late stages of development. García-López R, Soula C, Martínez S. Dev Dyn; 2009 Sep 20; 238(9):2418-29. PubMed ID: 19653319 [Abstract] [Full Text] [Related] Page: [Next] [New Search]