These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
73 related items for PubMed ID: 12511967
1. Mechanistic approach to membrane mass transport processes (mini review). Kargol M. Cell Mol Biol Lett; 2002; 7(4):983-93. PubMed ID: 12511967 [Abstract] [Full Text] [Related]
2. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure. Kargol M, Kargol A. Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701 [Abstract] [Full Text] [Related]
4. On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations. Suchanek G. Gen Physiol Biophys; 2005 Jun; 24(2):247-58. PubMed ID: 16118476 [Abstract] [Full Text] [Related]
5. Membrane Transport Generated by the Osmotic and Hydrostatic Pressure. Correlation Relation for Parameters L(p), σ, and ω. Kargol M, Kargol A. J Biol Phys; 2000 Dec; 26(4):307-20. PubMed ID: 23345729 [Abstract] [Full Text] [Related]
7. [New method of derivation of practical Kedem-Katchalsky membrane transport equations]. Jarzyńska M. Polim Med; 2005 Dec; 35(4):19-24. PubMed ID: 16619794 [Abstract] [Full Text] [Related]
8. [Influence of transport parameters values on volume flows in the double-membrane system]. Slezak A, Bryll A. Polim Med; 2005 Dec; 35(1):21-37. PubMed ID: 16050074 [Abstract] [Full Text] [Related]
13. [Model equations for graviosmotic flows in double-membrane system]. Slezak A. Polim Med; 2009 Dec; 39(1):3-15. PubMed ID: 19580169 [Abstract] [Full Text] [Related]
14. [Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters]. Slezak A, Grzegorczyn S, Prochazka B. Polim Med; 2007 Dec; 37(3):47-57. PubMed ID: 18251204 [Abstract] [Full Text] [Related]
15. Transport of non-electrolyte solutions through membrane with concentration polarization. Grzegorczyn S, Jasik-Slezak J, Michalska-Małecka K, Slezak A. Gen Physiol Biophys; 2008 Dec; 27(4):315-21. PubMed ID: 19202206 [Abstract] [Full Text] [Related]
17. A mixture theory analysis for passive transport in osmotic loading of cells. Ateshian GA, Likhitpanichkul M, Hung CT. J Biomech; 2006 Dec; 39(3):464-75. PubMed ID: 16389086 [Abstract] [Full Text] [Related]
20. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions. Slezak A, Turczyński B. Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944 [Abstract] [Full Text] [Related] Page: [Next] [New Search]