These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
301 related items for PubMed ID: 12514045
1. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Mountfort DO, Kaspar HF, Asher RA, Sutherland D. Appl Environ Microbiol; 2003 Jan; 69(1):583-92. PubMed ID: 12514045 [Abstract] [Full Text] [Related]
2. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Mountfort DO, Kaspar HF, Downes M, Asher RA. Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008 [Abstract] [Full Text] [Related]
3. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea. Xu L, Zhuang GC, Montgomery A, Liang Q, Joye SB, Wang F. Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654 [Abstract] [Full Text] [Related]
4. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. Sawicka JE, Robador A, Hubert C, Jørgensen BB, Brüchert V. ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071 [Abstract] [Full Text] [Related]
7. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Nüsslein B, Chin KJ, Eckert W, Conrad R. Environ Microbiol; 2001 Jul; 3(7):460-70. PubMed ID: 11553236 [Abstract] [Full Text] [Related]
9. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. Finke N, Jørgensen BB. ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360 [Abstract] [Full Text] [Related]
10. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries. Nozhevnikova AN, Nekrasova V, Ammann A, Zehnder AJ, Wehrli B, Holliger C. FEMS Microbiol Ecol; 2007 Dec; 62(3):336-44. PubMed ID: 17949433 [Abstract] [Full Text] [Related]
14. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. Finke N, Hoehler TM, Jørgensen BB. Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276 [Abstract] [Full Text] [Related]
15. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A. FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447 [Abstract] [Full Text] [Related]
16. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Winfrey MR, Zeikus JG. Appl Environ Microbiol; 1977 Feb; 33(2):275-81. PubMed ID: 848951 [Abstract] [Full Text] [Related]
17. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ. FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv084. PubMed ID: 26207045 [Abstract] [Full Text] [Related]
19. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Baldwin DS, Mitchell A. Water Res; 2012 Mar 15; 46(4):965-74. PubMed ID: 22204939 [Abstract] [Full Text] [Related]