These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


52 related items for PubMed ID: 12529211

  • 1. Minimum Muscle-Tension Change Trajectories Predicted by Using a 17-Muscle Model of the Monkey's Arm.
    Dornay M, Kawato ATR Human Information Processing Research Laboratories Kyoto Japan R Suzuki MK, Suzuki R.
    J Mot Behav; 1996 Jun; 28(2):83-100. PubMed ID: 12529211
    [Abstract] [Full Text] [Related]

  • 2. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M.
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [Abstract] [Full Text] [Related]

  • 3. A model of the learning of arm trajectories from spatial deviations.
    Jordan MI, Flash T, Arnon Y.
    J Cogn Neurosci; 1994 May; 6(4):359-76. PubMed ID: 23961731
    [Abstract] [Full Text] [Related]

  • 4. Minimum acceleration with constraints of center of mass: a unified model for arm movements and object manipulation.
    Leib R, Karniel A.
    J Neurophysiol; 2012 Sep; 108(6):1646-55. PubMed ID: 22696546
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM, Ghahramani Z, Jordan MI.
    Exp Brain Res; 1995 Sep; 103(3):460-70. PubMed ID: 7789452
    [Abstract] [Full Text] [Related]

  • 7. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S, Karniel A.
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [Abstract] [Full Text] [Related]

  • 8. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB, Zipser D.
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [Abstract] [Full Text] [Related]

  • 9. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model.
    Uno Y, Kawato M, Suzuki R.
    Biol Cybern; 1989 Nov; 61(2):89-101. PubMed ID: 2742921
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A simple control policy for achieving minimum jerk trajectories.
    Yazdani M, Gamble G, Henderson G, Hecht-Nielsen R.
    Neural Netw; 2012 Mar; 27():74-80. PubMed ID: 22137550
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J, Taniai Y.
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA.
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.