These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
428 related items for PubMed ID: 12532020
21. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. Simons EL, O'connor PM. Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723 [Abstract] [Full Text] [Related]
22. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV. de Margerie E, Mouret JB, Doncieux S, Meyer JA. Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730 [Abstract] [Full Text] [Related]
23. Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny. Heers AM, Rankin JW, Hutchinson JR. Front Bioeng Biotechnol; 2018 Dec; 6():140. PubMed ID: 30406089 [Abstract] [Full Text] [Related]
24. Development of locomotion over inclined surfaces in laying hens. LeBlanc C, Tobalske B, Bowley S, Harlander-Matauschek A. Animal; 2018 Mar; 12(3):585-596. PubMed ID: 28780926 [Abstract] [Full Text] [Related]
25. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. Dececchi TA, Larsson HC, Habib MB. PeerJ; 2016 Mar; 4():e2159. PubMed ID: 27441115 [Abstract] [Full Text] [Related]
26. Biomechanics and physiology of gait selection in flying birds. Tobalske BW. Physiol Biochem Zool; 2000 Mar; 73(6):736-50. PubMed ID: 11121347 [Abstract] [Full Text] [Related]
27. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds. Simons EL. Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157 [Abstract] [Full Text] [Related]
28. Effect of slotted wing tips on yawing moment characteristics. Sachs G, Moelyadi MA. J Theor Biol; 2006 Mar 07; 239(1):93-100. PubMed ID: 16199060 [Abstract] [Full Text] [Related]
29. Rotational accelerations stabilize leading edge vortices on revolving fly wings. Lentink D, Dickinson MH. J Exp Biol; 2009 Aug 07; 212(Pt 16):2705-19. PubMed ID: 19648415 [Abstract] [Full Text] [Related]
30. Bat flight generates complex aerodynamic tracks. Hedenström A, Johansson LC, Wolf M, von Busse R, Winter Y, Spedding GR. Science; 2007 May 11; 316(5826):894-7. PubMed ID: 17495171 [Abstract] [Full Text] [Related]
31. Precocial hindlimbs and altricial forelimbs: partitioning ontogenetic strategies in mallards (Anas platyrhynchos). Dial TR, Carrier DR. J Exp Biol; 2012 Nov 01; 215(Pt 21):3703-10. PubMed ID: 22855613 [Abstract] [Full Text] [Related]
32. Transition from leg to wing forces during take-off in birds. Provini P, Tobalske BW, Crandell KE, Abourachid A. J Exp Biol; 2012 Dec 01; 215(Pt 23):4115-24. PubMed ID: 22972887 [Abstract] [Full Text] [Related]
33. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies. Heers AM, Dial KP. Evolution; 2015 Feb 01; 69(2):305-20. PubMed ID: 25494705 [Abstract] [Full Text] [Related]
34. Paleontology. Flying dinos and baby birds offer new clues about how avians took wing. Balter M. Science; 2012 Nov 02; 338(6107):591-2. PubMed ID: 23118159 [No Abstract] [Full Text] [Related]
36. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. Bell E, Andres B, Goswami A. J Evol Biol; 2011 Dec 02; 24(12):2586-99. PubMed ID: 21955123 [Abstract] [Full Text] [Related]
37. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. Lehmann FO, Pick S. J Exp Biol; 2007 Apr 02; 210(Pt 8):1362-77. PubMed ID: 17401119 [Abstract] [Full Text] [Related]