These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


106 related items for PubMed ID: 1254809

  • 1. Degradation of 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) by Phytophthora megasperma.
    Smith AE, Phillips DV.
    J Agric Food Chem; 1976; 24(2):294-6. PubMed ID: 1254809
    [No Abstract] [Full Text] [Related]

  • 2. Metabolism of 4-(2,4-dichlorophenoxy)butyric acid in soybean and cocklebur.
    Wathana S, Corbin FT.
    J Agric Food Chem; 1972; 20(1):23-6. PubMed ID: 5062147
    [No Abstract] [Full Text] [Related]

  • 3. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid.
    Smejkal CW, Seymour FA, Burton SK, Lappin-Scott HM.
    J Ind Microbiol Biotechnol; 2003 Sep; 30(9):561-7. PubMed ID: 14513383
    [Abstract] [Full Text] [Related]

  • 4. Binding of some phenoxyalkanoic acids to bovine serum albumin in vitro.
    Mason RW.
    Pharmacology; 1975 Sep; 13(2):177-86. PubMed ID: 1170578
    [Abstract] [Full Text] [Related]

  • 5. [Metabolism of 4-(2.4.5-trichlorophenoxy)-butyric acid in rats (author's transl)].
    Böhme C, Grunow W.
    Arch Toxicol; 1974 Sep; 32(3):227-31. PubMed ID: 4479746
    [No Abstract] [Full Text] [Related]

  • 6. Residues of chlorophenoxy acid herbicides and their phenolic metabolites in tissues of sheep and cattle.
    Clark DE, Palmer JS, Radeleff RD, Crookshank HR, Farr FM.
    J Agric Food Chem; 1975 Sep; 23(3):573-8. PubMed ID: 1151004
    [No Abstract] [Full Text] [Related]

  • 7. Evidence of cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus erythropolis K2-3.
    Sträuber H, Müller RH, Babel W.
    Biodegradation; 2003 Sep; 14(1):41-50. PubMed ID: 12801099
    [Abstract] [Full Text] [Related]

  • 8. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation.
    Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LBB.
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5065-5078. PubMed ID: 31044311
    [Abstract] [Full Text] [Related]

  • 9. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.
    Cuadrado V, Merini LJ, Flocco CG, Giulietti AM.
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1371-8. PubMed ID: 18004561
    [Abstract] [Full Text] [Related]

  • 10. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils.
    Itoh K, Kinoshita M, Morishita S, Chida M, Suyama K.
    FEMS Microbiol Ecol; 2013 Apr; 84(1):124-32. PubMed ID: 23167922
    [Abstract] [Full Text] [Related]

  • 11. Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP).
    Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL, Groupe pour l'Etude du Devenir des Xénobiotiques dans l'Environment(GEDEXE).
    Chemosphere; 2005 Sep; 60(10):1471-80. PubMed ID: 16201028
    [Abstract] [Full Text] [Related]

  • 12. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam.
    Nguyen TLA, Dao ATN, Dang HTC, Koekkoek J, Brouwer A, de Boer TE, van Spanning RJM.
    Biodegradation; 2022 Jun; 33(3):301-316. PubMed ID: 35499742
    [Abstract] [Full Text] [Related]

  • 13. Investigation of the mechanism of glyceollin accumulation in soybean infected by Phytophthora megasperma f. sp. glycinea.
    Moesta P, Grisebach H.
    Arch Biochem Biophys; 1981 Dec; 212(2):462-7. PubMed ID: 7034651
    [No Abstract] [Full Text] [Related]

  • 14. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, Hua R.
    J Agric Food Chem; 2017 May 10; 65(18):3711-3720. PubMed ID: 28434228
    [Abstract] [Full Text] [Related]

  • 15. [Determination of residual amounts of phenoxy-alkane carboxylic acid (2,4-D, 2,4-DM) herbicides in food products].
    Chmil' VD.
    Vopr Pitan; 1975 May 10; (6):70-3. PubMed ID: 1210221
    [No Abstract] [Full Text] [Related]

  • 16. Degradation of diclofop-methyl by pure cultures of bacteria isolated from Manitoban soils.
    Smith-Greenier LL, Adkins A.
    Can J Microbiol; 1996 Mar 10; 42(3):227-33. PubMed ID: 8868229
    [Abstract] [Full Text] [Related]

  • 17. Effects of microbial community interactions on transformation rates of xenobiotic chemicals.
    Lewis DL, Hodson RE, Freeman LF.
    Appl Environ Microbiol; 1984 Sep 10; 48(3):561-5. PubMed ID: 6541888
    [Abstract] [Full Text] [Related]

  • 18. Accelerated degradation of methyl bromide in methane-,2,4-D-, and phenol-treated soils.
    Ou L.
    Bull Environ Contam Toxicol; 1997 Nov 10; 59(5):736-43. PubMed ID: 9323222
    [No Abstract] [Full Text] [Related]

  • 19. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP.
    Oh KH, Tuovinen OH.
    Bull Environ Contam Toxicol; 1991 Aug 10; 47(2):222-9. PubMed ID: 1912698
    [No Abstract] [Full Text] [Related]

  • 20. Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a heterogeneous geologic setting at an old landfill.
    Milosevic N, Qiu S, Elsner M, Einsiedl F, Maier MP, Bensch HK, Albrechtsen HJ, Bjerg PL.
    Water Res; 2013 Feb 01; 47(2):637-49. PubMed ID: 23168311
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.