These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 12549391
1. [The biodegradation of trichloroethylene by a methanotrophic bacterium]. Shen R, Li S. Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):63-9. PubMed ID: 12549391 [Abstract] [Full Text] [Related]
2. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB. Appl Environ Microbiol; 1991 Jan; 57(1):7-14. PubMed ID: 2036023 [Abstract] [Full Text] [Related]
3. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Paszczynski AJ, Paidisetti R, Johnson AK, Crawford RL, Colwell FS, Green T, Delwiche M, Lee H, Newby D, Brodie EL, Conrad M. Biodegradation; 2011 Nov; 22(6):1045-59. PubMed ID: 21360114 [Abstract] [Full Text] [Related]
8. Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Smith LH, Kitanidis PK, McCarty PL. Biotechnol Bioeng; 1997 Feb 05; 53(3):320-31. PubMed ID: 18633987 [Abstract] [Full Text] [Related]
10. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures. Eng W, Palumbo AV, Sriharan S, Strandberg GW. Appl Biochem Biotechnol; 1991 Feb 05; 28-29():887-99. PubMed ID: 1929390 [Abstract] [Full Text] [Related]
11. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Brusseau GA, Tsien HC, Hanson RS, Wackett LP. Biodegradation; 1990 Feb 05; 1(1):19-29. PubMed ID: 1368139 [Abstract] [Full Text] [Related]
12. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance. Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AA. Biotechnol Prog; 2000 Feb 05; 16(2):189-98. PubMed ID: 10753443 [Abstract] [Full Text] [Related]
13. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Alvarez-Cohen L, McCarty PL. Appl Environ Microbiol; 1991 Apr 05; 57(4):1031-7. PubMed ID: 1905516 [Abstract] [Full Text] [Related]
14. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Koh SC, Bowman JP, Sayler GS. Appl Environ Microbiol; 1993 Apr 05; 59(4):960-7. PubMed ID: 16348920 [Abstract] [Full Text] [Related]
15. Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. Chu KH, Alvarez-Cohen L. Appl Environ Microbiol; 1999 Feb 05; 65(2):766-72. PubMed ID: 9925614 [Abstract] [Full Text] [Related]
16. Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide. Henry SM, Grbić-Galić D. Appl Environ Microbiol; 1991 Jun 05; 57(6):1770-6. PubMed ID: 1908211 [Abstract] [Full Text] [Related]
17. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T. Biosci Biotechnol Biochem; 1998 Oct 05; 62(10):1925-31. PubMed ID: 9836428 [Abstract] [Full Text] [Related]
18. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Oldenhuis R, Vink RL, Janssen DB, Witholt B. Appl Environ Microbiol; 1989 Nov 05; 55(11):2819-26. PubMed ID: 2624462 [Abstract] [Full Text] [Related]