These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 12558278
1. Ear-canal acoustic admittance and reflectance measurements in human neonates. II. Predictions of middle-ear in dysfunction and sensorineural hearing loss. Keefe DH, Gorga MP, Neely ST, Zhao F, Vohr BR. J Acoust Soc Am; 2003 Jan; 113(1):407-22. PubMed ID: 12558278 [Abstract] [Full Text] [Related]
2. Ear-canal acoustic admittance and reflectance effects in human neonates. I. Predictions of otoacoustic emission and auditory brainstem responses. Keefe DH, Zhao F, Neely ST, Gorga MP, Vohr BR. J Acoust Soc Am; 2003 Jan; 113(1):389-406. PubMed ID: 12558277 [Abstract] [Full Text] [Related]
3. Reflectance Measures from Infant Ears With Normal Hearing and Transient Conductive Hearing Loss. Voss SE, Herrmann BS, Horton NJ, Amadei EA, Kujawa SG. Ear Hear; 2016 Jan; 37(5):560-71. PubMed ID: 27050773 [Abstract] [Full Text] [Related]
4. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)]. Hoth S. Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275 [Abstract] [Full Text] [Related]
5. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance. Norton SJ, Gorga MP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson B, Vohr BR, Mascher K, Fletcher K. Ear Hear; 2000 Oct; 21(5):508-28. PubMed ID: 11059707 [Abstract] [Full Text] [Related]
6. Wideband Absorbance Outcomes in Newborns: A Comparison With High-Frequency Tympanometry, Automated Brainstem Response, and Transient Evoked and Distortion Product Otoacoustic Emissions. Aithal S, Kei J, Driscoll C, Khan A, Swanston A. Ear Hear; 2015 Oct; 36(5):e237-50. PubMed ID: 25951046 [Abstract] [Full Text] [Related]
8. Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates. Janssen T, Gehr DD, Klein A, Müller J. J Acoust Soc Am; 2005 May 20; 117(5):2969-79. PubMed ID: 15957767 [Abstract] [Full Text] [Related]
9. Early detection of neonatal hearing loss by otoacoustic emissions and auditory brainstem response over 10 years of experience. Escobar-Ipuz FA, Soria-Bretones C, García-Jiménez MA, Cueto EM, Torres Aranda AM, Sotos JM. Int J Pediatr Otorhinolaryngol; 2019 Dec 20; 127():109647. PubMed ID: 31470205 [Abstract] [Full Text] [Related]
10. Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit. Gouws N, Swanepoel W, De Jager LB. S Afr J Commun Disord; 2017 Jun 28; 64(1):e1-e11. PubMed ID: 28697607 [Abstract] [Full Text] [Related]
11. [A comparison of auditory brainstem responses and otoacoustic emissions in hearing screening of high-risk neonates]. Xu FL, Xing QJ, Cheng XY. Zhongguo Dang Dai Er Ke Za Zhi; 2008 Aug 28; 10(4):460-3. PubMed ID: 18706161 [Abstract] [Full Text] [Related]
12. Analysis of audiological results of patients referred from newborn hearing screening program. Song CI, Kang HS, Ahn JH. Acta Otolaryngol; 2015 Aug 28; 135(11):1113-8. PubMed ID: 26144243 [Abstract] [Full Text] [Related]
13. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions. Putterman DB, Keefe DH, Hunter LL, Garinis AC, Fitzpatrick DF, McMillan GP, Feeney MP. Ear Hear; 2017 Aug 28; 38(4):507-520. PubMed ID: 28437273 [Abstract] [Full Text] [Related]
14. Measurement of conductive hearing loss in mice. Qin Z, Wood M, Rosowski JJ. Hear Res; 2010 May 28; 263(1-2):93-103. PubMed ID: 19835942 [Abstract] [Full Text] [Related]
15. Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry. Sanford CA, Keefe DH, Liu YW, Fitzpatrick D, McCreery RW, Lewis DE, Gorga MP. Ear Hear; 2009 Dec 28; 30(6):635-52. PubMed ID: 19701089 [Abstract] [Full Text] [Related]
16. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions. Keefe DH, Archer KL, Schmid KK, Fitzpatrick DF, Feeney MP, Hunter LL. J Am Acad Audiol; 2017 Oct 28; 28(9):838-860. PubMed ID: 28972472 [Abstract] [Full Text] [Related]
17. Predictive Accuracy of Sweep Frequency Impedance Technology in Identifying Conductive Conditions in Newborns. Aithal V, Kei J, Driscoll C, Murakoshi M, Wada H. J Am Acad Audiol; 2018 Feb 28; 29(2):106-117. PubMed ID: 29401058 [Abstract] [Full Text] [Related]
18. Audiologic evaluation of neonates with severe hyperbilirubinemia using transiently evoked otoacoustic emissions and auditory brainstem responses. Rhee CK, Park HM, Jang YJ. Laryngoscope; 1999 Dec 28; 109(12):2005-8. PubMed ID: 10591364 [Abstract] [Full Text] [Related]
19. [Transitory evoked and distortion products of otoacoustic emissions in absent auditory evoked potentials]. Schöler C, Schönweiler R, Ptok M. HNO; 1997 Dec 28; 45(12):1008-15. PubMed ID: 9486382 [Abstract] [Full Text] [Related]
20. Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears. Kuroda T. Auris Nasus Larynx; 2007 Mar 28; 34(1):29-38. PubMed ID: 17116381 [Abstract] [Full Text] [Related] Page: [Next] [New Search]