These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


248 related items for PubMed ID: 12562809

  • 1. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture.
    Bomchil N, Watnick P, Kolter R.
    J Bacteriol; 2003 Feb; 185(4):1384-90. PubMed ID: 12562809
    [Abstract] [Full Text] [Related]

  • 2. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine.
    Karatan E, Duncan TR, Watnick PI.
    J Bacteriol; 2005 Nov; 187(21):7434-43. PubMed ID: 16237027
    [Abstract] [Full Text] [Related]

  • 3. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae.
    Lim B, Beyhan S, Yildiz FH.
    J Bacteriol; 2007 Feb; 189(3):717-29. PubMed ID: 17122338
    [Abstract] [Full Text] [Related]

  • 4. Steps in the development of a Vibrio cholerae El Tor biofilm.
    Watnick PI, Kolter R.
    Mol Microbiol; 1999 Nov; 34(3):586-95. PubMed ID: 10564499
    [Abstract] [Full Text] [Related]

  • 5. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139.
    Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R.
    Mol Microbiol; 2001 Jan; 39(2):223-35. PubMed ID: 11136445
    [Abstract] [Full Text] [Related]

  • 6. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development.
    Moorthy S, Watnick PI.
    Mol Microbiol; 2004 Apr; 52(2):573-87. PubMed ID: 15066042
    [Abstract] [Full Text] [Related]

  • 7. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation.
    Young EC, Baumgartner JT, Karatan E, Kuhn ML.
    Microbiology (Reading); 2021 Mar; 167(3):. PubMed ID: 33502310
    [Abstract] [Full Text] [Related]

  • 8. Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways.
    McGinnis MW, Parker ZM, Walter NE, Rutkovsky AC, Cartaya-Marin C, Karatan E.
    FEMS Microbiol Lett; 2009 Oct; 299(2):166-74. PubMed ID: 19694812
    [Abstract] [Full Text] [Related]

  • 9. vpsA- and luxO-independent biofilms of Vibrio cholerae.
    Müller J, Miller MC, Nielsen AT, Schoolnik GK, Spormann AM.
    FEMS Microbiol Lett; 2007 Oct; 275(2):199-206. PubMed ID: 17697110
    [Abstract] [Full Text] [Related]

  • 10. Genetic analysis of Vibrio cholerae monolayer formation reveals a key role for DeltaPsi in the transition to permanent attachment.
    Van Dellen KL, Houot L, Watnick PI.
    J Bacteriol; 2008 Dec; 190(24):8185-96. PubMed ID: 18849423
    [Abstract] [Full Text] [Related]

  • 11. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation.
    Lim B, Beyhan S, Meir J, Yildiz FH.
    Mol Microbiol; 2006 Apr; 60(2):331-48. PubMed ID: 16573684
    [Abstract] [Full Text] [Related]

  • 12. The Sinorhizobium meliloti NspS-MbaA system affects biofilm formation, exopolysaccharide production and motility in response to specific polyamines.
    Chávez-Jacobo VM, Becerra-Rivera VA, Guerrero G, Dunn MF.
    Microbiology (Reading); 2023 Jan; 169(1):. PubMed ID: 36748569
    [Abstract] [Full Text] [Related]

  • 13. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis.
    Fong JCN, Syed KA, Klose KE, Yildiz FH.
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2757-2769. PubMed ID: 20466768
    [Abstract] [Full Text] [Related]

  • 14. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor.
    Watnick PI, Fullner KJ, Kolter R.
    J Bacteriol; 1999 Jun; 181(11):3606-9. PubMed ID: 10348878
    [Abstract] [Full Text] [Related]

  • 15. Overexpression of VpsS, a hybrid sensor kinase, enhances biofilm formation in Vibrio cholerae.
    Shikuma NJ, Fong JC, Odell LS, Perchuk BS, Laub MT, Yildiz FH.
    J Bacteriol; 2009 Aug; 191(16):5147-58. PubMed ID: 19525342
    [Abstract] [Full Text] [Related]

  • 16. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development.
    Moorthy S, Watnick PI.
    Mol Microbiol; 2005 Sep; 57(6):1623-35. PubMed ID: 16135229
    [Abstract] [Full Text] [Related]

  • 17. Quorum Sensing Autoinducer(s) and Flagellum Independently Mediate EPS Signaling in Vibrio cholerae Through LuxO-Independent Mechanism.
    Biswas S, Mukherjee P, Manna T, Dutta K, Guchhait KC, Karmakar A, Karmakar M, Dua P, Panda AK, Ghosh C.
    Microb Ecol; 2019 Apr; 77(3):616-630. PubMed ID: 30218129
    [Abstract] [Full Text] [Related]

  • 18. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization.
    Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH.
    J Bacteriol; 2007 Jul; 189(14):5348-60. PubMed ID: 17496082
    [Abstract] [Full Text] [Related]

  • 19. Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal.
    Bridges AA, Fei C, Bassler BL.
    Proc Natl Acad Sci U S A; 2020 Dec 22; 117(51):32639-32647. PubMed ID: 33288715
    [Abstract] [Full Text] [Related]

  • 20. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion.
    Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R.
    J Biol Chem; 2019 Oct 04; 294(40):14499-14511. PubMed ID: 31439670
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.