These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 12571101

  • 21. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T, Hirai S, Ishihara T, Fujiwara M.
    Genes Cells; 2021 Jun; 26(6):411-425. PubMed ID: 33817914
    [Abstract] [Full Text] [Related]

  • 22. The expression of TGFbeta signal transducers in the hypodermis regulates body size in C. elegans.
    Wang J, Tokarz R, Savage-Dunn C.
    Development; 2002 Nov; 129(21):4989-98. PubMed ID: 12397107
    [Abstract] [Full Text] [Related]

  • 23. A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length.
    Morita K, Flemming AJ, Sugihara Y, Mochii M, Suzuki Y, Yoshida S, Wood WB, Kohara Y, Leroi AM, Ueno N.
    EMBO J; 2002 Mar 01; 21(5):1063-73. PubMed ID: 11867534
    [Abstract] [Full Text] [Related]

  • 24. Mutations in a guanylate cyclase GCY-35/GCY-36 modify Bardet-Biedl syndrome-associated phenotypes in Caenorhabditis elegans.
    Mok CA, Healey MP, Shekhar T, Leroux MR, Héon E, Zhen M.
    PLoS Genet; 2011 Oct 01; 7(10):e1002335. PubMed ID: 22022287
    [Abstract] [Full Text] [Related]

  • 25. Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans.
    Park J, Meisel JD, Kim DH.
    PLoS Genet; 2020 Aug 01; 16(8):e1008505. PubMed ID: 32776934
    [Abstract] [Full Text] [Related]

  • 26. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans.
    van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P.
    Genetics; 2008 Nov 01; 180(3):1475-91. PubMed ID: 18832350
    [Abstract] [Full Text] [Related]

  • 27. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans.
    Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y.
    Neuron; 1996 Oct 01; 17(4):707-18. PubMed ID: 8893027
    [Abstract] [Full Text] [Related]

  • 28. egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues.
    Daniels SA, Ailion M, Thomas JH, Sengupta P.
    Genetics; 2000 Sep 01; 156(1):123-41. PubMed ID: 10978280
    [Abstract] [Full Text] [Related]

  • 29. Lethargus is a Caenorhabditis elegans sleep-like state.
    Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI.
    Nature; 2008 Jan 31; 451(7178):569-72. PubMed ID: 18185515
    [Abstract] [Full Text] [Related]

  • 30. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety.
    You YJ, Kim J, Raizen DM, Avery L.
    Cell Metab; 2008 Mar 31; 7(3):249-57. PubMed ID: 18316030
    [Abstract] [Full Text] [Related]

  • 31. The Caenorhabditis elegans EGL-26 protein mediates vulval cell morphogenesis.
    Hanna-Rose W, Han M.
    Dev Biol; 2002 Jan 15; 241(2):247-58. PubMed ID: 11784109
    [Abstract] [Full Text] [Related]

  • 32. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans.
    Fierro-González JC, González-Barrios M, Miranda-Vizuete A, Swoboda P.
    Biochem Biophys Res Commun; 2011 Mar 18; 406(3):478-82. PubMed ID: 21334311
    [Abstract] [Full Text] [Related]

  • 33. The role of MAP4K3 in lifespan regulation of Caenorhabditis elegans.
    Khan MH, Hart MJ, Rea SL.
    Biochem Biophys Res Commun; 2012 Aug 24; 425(2):413-8. PubMed ID: 22846570
    [Abstract] [Full Text] [Related]

  • 34. Distribution and movement of Caenorhabditis elegans on a thermal gradient.
    Yamada Y, Ohshima Y.
    J Exp Biol; 2003 Aug 24; 206(Pt 15):2581-93. PubMed ID: 12819265
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans.
    O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND.
    PLoS Genet; 2009 Dec 24; 5(12):e1000761. PubMed ID: 20011101
    [Abstract] [Full Text] [Related]

  • 37. Opposing functions of calcineurin and CaMKII regulate G-protein signaling in egg-laying behavior of C.elegans.
    Lee J, Jee C, Song HO, Bandyopadhyay J, Lee JI, Yu JR, Lee J, Park BJ, Ahnn J.
    J Mol Biol; 2004 Nov 19; 344(2):585-95. PubMed ID: 15522306
    [Abstract] [Full Text] [Related]

  • 38. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans.
    Rose JK, Sangha S, Rai S, Norman KR, Rankin CH.
    J Neurosci; 2005 Aug 03; 25(31):7159-68. PubMed ID: 16079398
    [Abstract] [Full Text] [Related]

  • 39. The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction.
    Bamps S, Wirtz J, Savory FR, Lake D, Hope IA.
    Mech Ageing Dev; 2009 Aug 03; 130(11-12):762-70. PubMed ID: 19896965
    [Abstract] [Full Text] [Related]

  • 40. Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5.
    Ferreira HB, Zhang Y, Zhao C, Emmons SW.
    Dev Biol; 1999 Mar 01; 207(1):215-28. PubMed ID: 10049576
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.