These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 12573536

  • 21. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival.
    Schlieve CR, Lieven CJ, Levin LA.
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3878-86. PubMed ID: 16936100
    [Abstract] [Full Text] [Related]

  • 22. Alpha-lipoic acid reduces methylmercury-induced neuronal injury in rat cerebral cortex via antioxidation pathways.
    Yang T, Xu Z, Liu W, Feng S, Li H, Guo M, Deng Y, Xu B.
    Environ Toxicol; 2017 Mar; 32(3):931-943. PubMed ID: 27298056
    [Abstract] [Full Text] [Related]

  • 23. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens.
    Jang EY, Yang CH, Hedges DM, Kim SP, Lee JY, Ekins TG, Garcia BT, Kim HY, Nelson AC, Kim NJ, Steffensen SC.
    Addict Biol; 2017 Sep; 22(5):1304-1315. PubMed ID: 27417190
    [Abstract] [Full Text] [Related]

  • 24. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity.
    Aschner M, Syversen T, Souza DO, Rocha JB, Farina M.
    Braz J Med Biol Res; 2007 Mar; 40(3):285-91. PubMed ID: 17334523
    [Abstract] [Full Text] [Related]

  • 25. The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress.
    Liu W, Xu Z, Yang T, Deng Y, Xu B, Feng S, Li Y.
    Free Radic Res; 2014 Aug; 48(8):849-63. PubMed ID: 24821269
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P, Aschner M, Syversen T.
    Toxicology; 2007 Feb 12; 230(2-3):164-77. PubMed ID: 17169475
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats.
    Marklund N, Lewander T, Clausen F, Hillered L.
    J Cereb Blood Flow Metab; 2001 Nov 12; 21(11):1259-67. PubMed ID: 11702041
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target.
    Pierozan P, Biasibetti H, Schmitz F, Ávila H, Fernandes CG, Pessoa-Pureur R, Wyse ATS.
    Mol Neurobiol; 2017 Oct 12; 54(8):5752-5767. PubMed ID: 27660266
    [Abstract] [Full Text] [Related]

  • 32. Redox-sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture.
    Robinson KA, Stewart CA, Pye QN, Nguyen X, Kenney L, Salzman S, Floyd RA, Hensley K.
    J Neurosci Res; 1999 Mar 15; 55(6):724-32. PubMed ID: 10220113
    [Abstract] [Full Text] [Related]

  • 33. Effect of grape seed proanthocyanidin extracts on methylmercury-induced neurotoxicity in rats.
    Yang H, Xu Z, Liu W, Wei Y, Deng Y, Xu B.
    Biol Trace Elem Res; 2012 Jun 15; 147(1-3):156-64. PubMed ID: 22116679
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes.
    Yuntao F, Chenjia G, Panpan Z, Wenjun Z, Suhua W, Guangwei X, Haifeng S, Jian L, Wanxin P, Yun F, Cai J, Aschner M, Rongzhu L.
    Arch Toxicol; 2016 Feb 15; 90(2):333-45. PubMed ID: 25488884
    [Abstract] [Full Text] [Related]

  • 36. Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons.
    Shanker G, Allen JW, Mutkus LA, Aschner M.
    Brain Res; 2001 Sep 28; 914(1-2):159-65. PubMed ID: 11578608
    [Abstract] [Full Text] [Related]

  • 37. Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway.
    Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y, Xu B.
    Mol Neurobiol; 2017 Jan 28; 54(1):375-391. PubMed ID: 26742517
    [Abstract] [Full Text] [Related]

  • 38. Antioxidants, oxidative stress, and degenerative neurological disorders.
    Floyd RA.
    Proc Soc Exp Biol Med; 1999 Dec 28; 222(3):236-45. PubMed ID: 10601882
    [Abstract] [Full Text] [Related]

  • 39. Involvement of TRPV4 channels in Aβ(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling.
    Bai JZ, Lipski J.
    Neurotoxicology; 2014 Mar 28; 41():64-72. PubMed ID: 24457011
    [Abstract] [Full Text] [Related]

  • 40. Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent.
    Dreiem A, Seegal RF.
    Neurotoxicology; 2007 Jul 28; 28(4):720-6. PubMed ID: 17442395
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.