These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 12574573
1. Essential role of Gap junctions in NO- and prostanoid-independent relaxations evoked by acetylcholine in rabbit intracerebral arteries. Ujiie H, Chaytor AT, Bakker LM, Griffith TM. Stroke; 2003 Feb; 34(2):544-50. PubMed ID: 12574573 [Abstract] [Full Text] [Related]
2. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2. Hutcheson IR, Chaytor AT, Evans WH, Griffith TM. Circ Res; 2003 Feb; 84(1):53-63. PubMed ID: 9915774 [Abstract] [Full Text] [Related]
3. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. Chaytor AT, Evans WH, Griffith TM. J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817 [Abstract] [Full Text] [Related]
4. Relative contributions of NO and gap junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size. Berman RS, Martin PE, Evans WH, Griffith TM. Microvasc Res; 2002 Jan 15; 63(1):115-28. PubMed ID: 11749078 [Abstract] [Full Text] [Related]
5. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F, Dusting GJ. Br J Pharmacol; 2001 Apr 15; 132(7):1558-64. PubMed ID: 11264250 [Abstract] [Full Text] [Related]
6. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. Sandow SL, Goto K, Rummery NM, Hill CE. J Physiol; 2004 May 01; 556(Pt 3):875-86. PubMed ID: 14766938 [Abstract] [Full Text] [Related]
7. Effects of connexin-mimetic peptides on nitric oxide synthase- and cyclooxygenase-independent renal vasodilation. De Vriese AS, Van de Voorde J, Lameire NH. Kidney Int; 2002 Jan 01; 61(1):177-85. PubMed ID: 11786099 [Abstract] [Full Text] [Related]
8. Connexin 43 mediates endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy pregnant women. Lang NN, Luksha L, Newby DE, Kublickiene K. Am J Physiol Heart Circ Physiol; 2007 Feb 01; 292(2):H1026-32. PubMed ID: 17085540 [Abstract] [Full Text] [Related]
9. Development of endothelium-dependent relaxation in canine coronary collateral arteries. Rapps JA, Myers PR, Zhong Q, Parker JL. Circulation; 1998 Oct 20; 98(16):1675-83. PubMed ID: 9778334 [Abstract] [Full Text] [Related]
10. Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions. Chaytor AT, Marsh WL, Hutcheson IR, Griffith TM. Endothelium; 2000 Oct 20; 7(4):265-78. PubMed ID: 11201524 [Abstract] [Full Text] [Related]
11. Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Chaytor AT, Martin PE, Edwards DH, Griffith TM. Am J Physiol Heart Circ Physiol; 2001 Jun 20; 280(6):H2441-50. PubMed ID: 11356596 [Abstract] [Full Text] [Related]
12. Role of gap junctions in endothelium-derived hyperpolarizing factor-mediated vasodilatation in rat renal artery. Karagiannis J, Rand M, Li CG. Acta Pharmacol Sin; 2004 Aug 20; 25(8):1031-7. PubMed ID: 15301736 [Abstract] [Full Text] [Related]
13. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation. López D, Rodríguez-Sinovas A, Agulló E, García A, Sánchez JA, García-Dorado D. Exp Physiol; 2009 Oct 20; 94(10):1088-97. PubMed ID: 19617266 [Abstract] [Full Text] [Related]
14. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetinic acid. Taylor HJ, Chaytor AT, Evans WH, Griffith TM. Br J Pharmacol; 1998 Sep 20; 125(1):1-3. PubMed ID: 9776336 [Abstract] [Full Text] [Related]
15. Characterization of nitric oxide- and prostaglandin-independent relaxation in response to acetylcholine in rabbit renal artery. Kagota S, Yamaguchi Y, Nakamura K, Kunitomo M. Clin Exp Pharmacol Physiol; 1999 Oct 20; 26(10):790-6. PubMed ID: 10549403 [Abstract] [Full Text] [Related]
16. Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery. Hill CE, Hickey H, Sandow SL. J Auton Nerv Syst; 2000 Jul 03; 81(1-3):122-7. PubMed ID: 10869710 [Abstract] [Full Text] [Related]
17. Role of phospholipase A(2) and myoendothelial gap junctions in melittin-induced arterial relaxation. Hutcheson IR, Griffith TM. Eur J Pharmacol; 2000 Oct 13; 406(2):239-45. PubMed ID: 11020487 [Abstract] [Full Text] [Related]