These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


530 related items for PubMed ID: 12578350

  • 1. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F, Tavares M, Dufourc EJ.
    Biochemistry; 2003 Feb 18; 42(6):1383-90. PubMed ID: 12578350
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Cholesterol reverts Triton X-100 preferential solubilization of sphingomyelin over phosphatidylcholine: a 31P-NMR study.
    Ahyayauch H, Collado MI, Goñi FM, Lichtenberg D.
    FEBS Lett; 2009 Sep 03; 583(17):2859-64. PubMed ID: 19647740
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Fluorinated cholesterol retains domain-forming activity in sphingomyelin bilayers.
    Matsumori N, Okazaki H, Nomura K, Murata M.
    Chem Phys Lipids; 2011 Jul 03; 164(5):401-8. PubMed ID: 21664344
    [Abstract] [Full Text] [Related]

  • 6. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB, Pownall HJ.
    Biochemistry; 2005 Aug 02; 44(30):10423-33. PubMed ID: 16042420
    [Abstract] [Full Text] [Related]

  • 7. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR.
    Holland GP, McIntyre SK, Alam TM.
    Biophys J; 2006 Jun 01; 90(11):4248-60. PubMed ID: 16533851
    [Abstract] [Full Text] [Related]

  • 8. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins.
    Tsamaloukas A, Szadkowska H, Heerklotz H.
    Biophys J; 2006 Jun 15; 90(12):4479-87. PubMed ID: 16581844
    [Abstract] [Full Text] [Related]

  • 9. Sphingomyelin/phosphatidylcholine/cholesterol monolayers--analysis of the interactions in model membranes and Brewster Angle Microscopy experiments.
    Wydro P.
    Colloids Surf B Biointerfaces; 2012 May 01; 93():174-9. PubMed ID: 22277747
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes.
    Ahmed SN, Brown DA, London E.
    Biochemistry; 1997 Sep 09; 36(36):10944-53. PubMed ID: 9283086
    [Abstract] [Full Text] [Related]

  • 12. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T, Murzyn K, Karttunen M, Pasenkiewicz-Gierula M.
    J Pept Sci; 2008 Apr 09; 14(4):374-82. PubMed ID: 17985365
    [Abstract] [Full Text] [Related]

  • 13. Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes.
    Gensure RH, Zeidel ML, Hill WG.
    Biochem J; 2006 Sep 15; 398(3):485-95. PubMed ID: 16706750
    [Abstract] [Full Text] [Related]

  • 14. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A.
    FEBS Lett; 2008 Sep 22; 582(21-22):3230-6. PubMed ID: 18755187
    [Abstract] [Full Text] [Related]

  • 15. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A, Müller P, Stöckl M, Herrmann A, Huster D.
    Biophys J; 2008 Apr 01; 94(7):2680-90. PubMed ID: 18178660
    [Abstract] [Full Text] [Related]

  • 16. Interaction of cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger for microdomain/raft formation?
    Shaikh SR, Cherezov V, Caffrey M, Stillwell W, Wassall SR.
    Biochemistry; 2003 Oct 21; 42(41):12028-37. PubMed ID: 14556634
    [Abstract] [Full Text] [Related]

  • 17. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study.
    Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R.
    Biochim Biophys Acta; 2006 Feb 21; 1758(2):248-58. PubMed ID: 16529710
    [Abstract] [Full Text] [Related]

  • 18. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study.
    de Almeida RF, Loura LM, Fedorov A, Prieto M.
    J Mol Biol; 2005 Mar 04; 346(4):1109-20. PubMed ID: 15701521
    [Abstract] [Full Text] [Related]

  • 19. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR.
    Biochim Biophys Acta Biomembr; 2018 Oct 04; 1860(10):1985-1993. PubMed ID: 29730243
    [Abstract] [Full Text] [Related]

  • 20. Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study.
    Róg T, Pasenkiewicz-Gierula M.
    Biochimie; 2006 May 04; 88(5):449-60. PubMed ID: 16356621
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.