These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
353 related items for PubMed ID: 12581347
1. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Escudero J, Den Dulk-Ras A, Regensburg-Tuïnk TJ, Hooykaas PJ. Mol Microbiol; 2003 Feb; 47(4):891-901. PubMed ID: 12581347 [Abstract] [Full Text] [Related]
2. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Simone M, McCullen CA, Stahl LE, Binns AN. Mol Microbiol; 2001 Sep; 41(6):1283-93. PubMed ID: 11580834 [Abstract] [Full Text] [Related]
3. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. Lee LY, Gelvin SB, Kado CI. J Bacteriol; 1999 Jan; 181(1):186-96. PubMed ID: 9864329 [Abstract] [Full Text] [Related]
4. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ. Mol Microbiol; 2005 Oct; 58(2):565-79. PubMed ID: 16194240 [Abstract] [Full Text] [Related]
5. The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2. Stahl LE, Jacobs A, Binns AN. J Bacteriol; 1998 Aug; 180(15):3933-9. PubMed ID: 9683491 [Abstract] [Full Text] [Related]
6. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jácome E, Hooykaas PJ. Nucleic Acids Res; 2003 Feb 01; 31(3):860-8. PubMed ID: 12560481 [Abstract] [Full Text] [Related]
7. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Vergunst AC, van Lier MC, den Dulk-Ras A, Hooykaas PJ. Plant Physiol; 2003 Nov 01; 133(3):978-88. PubMed ID: 14551327 [Abstract] [Full Text] [Related]
8. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Atmakuri K, Ding Z, Christie PJ. Mol Microbiol; 2003 Sep 01; 49(6):1699-713. PubMed ID: 12950931 [Abstract] [Full Text] [Related]
9. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. Binns AN, Beaupré CE, Dale EM. J Bacteriol; 1995 Sep 01; 177(17):4890-9. PubMed ID: 7665465 [Abstract] [Full Text] [Related]
10. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Li X, Yang Q, Tu H, Lim Z, Pan SQ. Plant J; 2014 Feb 01; 77(3):487-95. PubMed ID: 24299048 [Abstract] [Full Text] [Related]
11. Inducible Expression of Agrobacterium Virulence Gene VirE2 for Stringent Regulation of T-DNA Transfer in Plant Transient Expression Systems. Denkovskienė E, Paškevičius Š, Werner S, Gleba Y, Ražanskienė A. Mol Plant Microbe Interact; 2015 Nov 01; 28(11):1247-55. PubMed ID: 26292850 [Abstract] [Full Text] [Related]
12. Agrobacterium-Mediated Transformation of Yeast and Fungi. Hooykaas PJJ, van Heusden GPH, Niu X, Reza Roushan M, Soltani J, Zhang X, van der Zaal BJ. Curr Top Microbiol Immunol; 2018 Nov 01; 418():349-374. PubMed ID: 29770864 [Abstract] [Full Text] [Related]
13. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. Bohne J, Yim A, Binns AN. Proc Natl Acad Sci U S A; 1998 Jun 09; 95(12):7057-62. PubMed ID: 9618538 [Abstract] [Full Text] [Related]
14. Pilus assembly by Agrobacterium T-DNA transfer genes. Fullner KJ, Lara JC, Nester EW. Science; 1996 Aug 23; 273(5278):1107-9. PubMed ID: 8688097 [Abstract] [Full Text] [Related]
15. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA. Fullner KJ, Stephens KM, Nester EW. Mol Gen Genet; 1994 Dec 15; 245(6):704-15. PubMed ID: 7830718 [Abstract] [Full Text] [Related]
16. Identification of a Carboxy-Terminal Glutamine-Rich Domain in Agrobacterium tumefaciens Coupling Protein VirD4 Required for Recognition of T-Strand DNA and Not VirE2 as a Substrate for Transfer to Plant Cells. Das A. Mol Plant Microbe Interact; 2020 Feb 15; 33(2):166-172. PubMed ID: 31855496 [Abstract] [Full Text] [Related]
17. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Kumar RB, Das A. Mol Microbiol; 2002 Mar 15; 43(6):1523-32. PubMed ID: 11952902 [Abstract] [Full Text] [Related]
18. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. Hodges LD, Lee LY, McNett H, Gelvin SB, Ream W. J Bacteriol; 2009 Jan 15; 191(1):355-64. PubMed ID: 18952790 [Abstract] [Full Text] [Related]
19. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Pan SQ, Jin S, Boulton MI, Hawes M, Gordon MP, Nester EW. Mol Microbiol; 1995 Jul 15; 17(2):259-69. PubMed ID: 7494475 [Abstract] [Full Text] [Related]
20. The virD4 gene is required for virulence while virD3 and orf5 are not required for virulence of Agrobacterium tumefaciens. Lin TS, Kado CI. Mol Microbiol; 1993 Aug 15; 9(4):803-12. PubMed ID: 8231811 [Abstract] [Full Text] [Related] Page: [Next] [New Search]