These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 12583784
21. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. Bowd C, Zangwill LM, Weinreb RN. Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798 [Abstract] [Full Text] [Related]
22. Optic disk and nerve fiber layer imaging to detect glaucoma. Badalà F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Am J Ophthalmol; 2007 Nov; 144(5):724-32. PubMed ID: 17868631 [Abstract] [Full Text] [Related]
23. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss. Grewal DS, Sehi M, Greenfield DS. Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209 [Abstract] [Full Text] [Related]
24. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry. Reus NJ, Lemij HG. Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4182-8. PubMed ID: 16249497 [Abstract] [Full Text] [Related]
25. Retinal nerve fiber layer measurement repeatability in scanning laser polarimetry with enhanced corneal compensation. Mai TA, Reus NJ, Lemij HG. J Glaucoma; 2008 Nov; 17(4):269-74. PubMed ID: 18552611 [Abstract] [Full Text] [Related]
26. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation. Chen HY, Huang ML, Tsai YY, Hung PT, Lin EJ. J Glaucoma; 2008 Mar; 17(2):105-10. PubMed ID: 18344755 [Abstract] [Full Text] [Related]
31. Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography. Götzinger E, Pircher M, Baumann B, Hirn C, Vass C, Hitzenberger CK. Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5366-72. PubMed ID: 19036999 [Abstract] [Full Text] [Related]
32. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888 [Abstract] [Full Text] [Related]
36. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Mai TA, Reus NJ, Lemij HG. Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496 [Abstract] [Full Text] [Related]
37. The influence of age, sex, race, refractive error and optic disc parameters on the sensitivity and specificity of scanning laser polarimetry. Costa VP, Lauande-Pimentel R, Fonseca RA, Magacho L. Acta Ophthalmol Scand; 2004 Aug; 82(4):419-25. PubMed ID: 15291935 [Abstract] [Full Text] [Related]
38. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna R, Weinreb RN. Am J Ophthalmol; 2009 Jul; 148(1):155-63.e1. PubMed ID: 19375062 [Abstract] [Full Text] [Related]
39. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Yu M, Lin C, Weinreb RN, Lai G, Chiu V, Leung CK. Ophthalmology; 2016 Jun; 123(6):1201-10. PubMed ID: 27001534 [Abstract] [Full Text] [Related]
40. Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Bagga H, Greenfield DS. Am J Ophthalmol; 2004 May; 137(5):797-805. PubMed ID: 15126142 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]