These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 12591939

  • 1. The C-terminal domain phosphatase and transcription elongation activities of FCP1 are regulated by phosphorylation.
    Friedl EM, Lane WS, Erdjument-Bromage H, Tempst P, Reinberg D.
    Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2328-33. PubMed ID: 12591939
    [Abstract] [Full Text] [Related]

  • 2. NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase.
    Yang A, Abbott KL, Desjardins A, Di Lello P, Omichinski JG, Legault P.
    Biochemistry; 2009 Mar 10; 48(9):1964-74. PubMed ID: 19215094
    [Abstract] [Full Text] [Related]

  • 3. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation.
    Abbott KL, Renfrow MB, Chalmers MJ, Nguyen BD, Marshall AG, Legault P, Omichinski JG.
    Biochemistry; 2005 Mar 01; 44(8):2732-45. PubMed ID: 15723518
    [Abstract] [Full Text] [Related]

  • 4. FCP1 phosphorylation by casein kinase 2 enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain phosphatase activity.
    Palancade B, Dubois MF, Bensaude O.
    J Biol Chem; 2002 Sep 27; 277(39):36061-7. PubMed ID: 12138108
    [Abstract] [Full Text] [Related]

  • 5. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II.
    Washington K, Ammosova T, Beullens M, Jerebtsova M, Kumar A, Bollen M, Nekhai S.
    J Biol Chem; 2002 Oct 25; 277(43):40442-8. PubMed ID: 12185079
    [Abstract] [Full Text] [Related]

  • 6. Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator.
    Kong SE, Kobor MS, Krogan NJ, Somesh BP, Søgaard TM, Greenblatt JF, Svejstrup JQ.
    J Biol Chem; 2005 Feb 11; 280(6):4299-306. PubMed ID: 15563457
    [Abstract] [Full Text] [Related]

  • 7. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.
    Tombácz I, Schauer T, Juhász I, Komonyi O, Boros I.
    Gene; 2009 Oct 15; 446(2):58-67. PubMed ID: 19632310
    [Abstract] [Full Text] [Related]

  • 8. Interactions of the HIV-1 Tat and RAP74 proteins with the RNA polymerase II CTD phosphatase FCP1.
    Abbott KL, Archambault J, Xiao H, Nguyen BD, Roeder RG, Greenblatt J, Omichinski JG, Legault P.
    Biochemistry; 2005 Mar 01; 44(8):2716-31. PubMed ID: 15723517
    [Abstract] [Full Text] [Related]

  • 9. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5.
    Yeo M, Lin PS, Dahmus ME, Gill GN.
    J Biol Chem; 2003 Jul 11; 278(28):26078-85. PubMed ID: 12721286
    [Abstract] [Full Text] [Related]

  • 10. Endothelin-1-induced cardiomyocyte hypertrophy is partly regulated by transcription factor II-F interacting C-terminal domain phosphatase of RNA polymerase II.
    Sakai S, Kimura T, Wang Z, Shimojo N, Maruyama H, Homma S, Kuga K, Yamaguchi I, Aonuma K, Miyauchi T.
    Life Sci; 2012 Oct 15; 91(13-14):572-7. PubMed ID: 22569295
    [Abstract] [Full Text] [Related]

  • 11. The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP.
    Licciardo P, Amente S, Ruggiero L, Monti M, Pucci P, Lania L, Majello B.
    Nucleic Acids Res; 2003 Feb 01; 31(3):999-1005. PubMed ID: 12560496
    [Abstract] [Full Text] [Related]

  • 12. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.
    Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S.
    Genes Dev; 2001 Dec 15; 15(24):3319-29. PubMed ID: 11751637
    [Abstract] [Full Text] [Related]

  • 13. A protein phosphatase functions to recycle RNA polymerase II.
    Cho H, Kim TK, Mancebo H, Lane WS, Flores O, Reinberg D.
    Genes Dev; 1999 Jun 15; 13(12):1540-52. PubMed ID: 10385623
    [Abstract] [Full Text] [Related]

  • 14. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A, Shuman S, Lima CD.
    Mol Cell; 2008 Nov 21; 32(4):478-90. PubMed ID: 19026779
    [Abstract] [Full Text] [Related]

  • 15. TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II.
    Lin PS, Dubois MF, Dahmus ME.
    J Biol Chem; 2002 Nov 29; 277(48):45949-56. PubMed ID: 12351650
    [Abstract] [Full Text] [Related]

  • 16. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins.
    Palancade B, Marshall NF, Tremeau-Bravard A, Bensaude O, Dahmus ME, Dubois MF.
    J Mol Biol; 2004 Jan 09; 335(2):415-24. PubMed ID: 14672652
    [Abstract] [Full Text] [Related]

  • 17. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II.
    Kimura M, Suzuki H, Ishihama A.
    Mol Cell Biol; 2002 Mar 09; 22(5):1577-88. PubMed ID: 11839823
    [Abstract] [Full Text] [Related]

  • 18. Functional characterization of small CTD phosphatases.
    Yeo M, Lin PS.
    Methods Mol Biol; 2007 Mar 09; 365():335-46. PubMed ID: 17200573
    [Abstract] [Full Text] [Related]

  • 19. Structure and mechanism of RNA polymerase II CTD phosphatases.
    Kamenski T, Heilmeier S, Meinhart A, Cramer P.
    Mol Cell; 2004 Aug 13; 15(3):399-407. PubMed ID: 15304220
    [Abstract] [Full Text] [Related]

  • 20. An encephalitozoon cuniculi ortholog of the RNA polymerase II carboxyl-terminal domain (CTD) serine phosphatase Fcp1.
    Hausmann S, Schwer B, Shuman S.
    Biochemistry; 2004 Jun 08; 43(22):7111-20. PubMed ID: 15170348
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.