These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 12591939
21. Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases. Majello B, Napolitano G. Front Biosci; 2001 Oct 01; 6():D1358-68. PubMed ID: 11578967 [Abstract] [Full Text] [Related]
22. Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes. Fuda NJ, Buckley MS, Wei W, Core LJ, Waters CT, Reinberg D, Lis JT. Mol Cell Biol; 2012 Sep 01; 32(17):3428-37. PubMed ID: 22733996 [Abstract] [Full Text] [Related]
23. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Suh MH, Ye P, Zhang M, Hausmann S, Shuman S, Gnatt AL, Fu J. Proc Natl Acad Sci U S A; 2005 Nov 29; 102(48):17314-9. PubMed ID: 16301539 [Abstract] [Full Text] [Related]
24. Molecular mechanism of recruitment of TFIIF- associating RNA polymerase C-terminal domain phosphatase (FCP1) by transcription factor IIF. Kamada K, Roeder RG, Burley SK. Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2296-9. PubMed ID: 12591941 [Abstract] [Full Text] [Related]
25. Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Licciardo P, Ruggiero L, Lania L, Majello B. Nucleic Acids Res; 2001 Sep 01; 29(17):3539-45. PubMed ID: 11522823 [Abstract] [Full Text] [Related]
26. Inhibition of Tat transactivation by the RNA polymerase II CTD-phosphatase FCP1. Licciardo P, Napolitano G, Majello B, Lania L. AIDS; 2001 Feb 16; 15(3):301-7. PubMed ID: 11273209 [Abstract] [Full Text] [Related]
27. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. Kops O, Zhou XZ, Lu KP. FEBS Lett; 2002 Feb 27; 513(2-3):305-11. PubMed ID: 11904169 [Abstract] [Full Text] [Related]
28. NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Nguyen BD, Abbott KL, Potempa K, Kobor MS, Archambault J, Greenblatt J, Legault P, Omichinski JG. Proc Natl Acad Sci U S A; 2003 May 13; 100(10):5688-93. PubMed ID: 12732728 [Abstract] [Full Text] [Related]
29. High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production. Juhász I, Villányi Z, Tombácz I, Boros IM. Gene; 2012 Nov 01; 509(1):60-7. PubMed ID: 22903034 [Abstract] [Full Text] [Related]
30. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. Hausmann S, Shuman S. J Biol Chem; 2002 Jun 14; 277(24):21213-20. PubMed ID: 11934898 [Abstract] [Full Text] [Related]
31. Native-based simulations of the binding interaction between RAP74 and the disordered FCP1 peptide. Kumar S, Showalter SA, Noid WG. J Phys Chem B; 2013 Mar 21; 117(11):3074-85. PubMed ID: 23387368 [Abstract] [Full Text] [Related]
32. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. Chambers RS, Wang BQ, Burton ZF, Dahmus ME. J Biol Chem; 1995 Jun 23; 270(25):14962-9. PubMed ID: 7797476 [Abstract] [Full Text] [Related]
33. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Palancade B, Dubois MF, Dahmus ME, Bensaude O. Mol Cell Biol; 2001 Oct 23; 21(19):6359-68. PubMed ID: 11533226 [Abstract] [Full Text] [Related]
34. Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response. Jeong SJ, Kim HJ, Yang YJ, Seol JH, Jung BY, Han JW, Lee HW, Cho EJ. J Microbiol; 2005 Dec 23; 43(6):516-22. PubMed ID: 16410768 [Abstract] [Full Text] [Related]
35. NMR assignment of the intrinsically disordered C-terminal region of Homo sapiens FCP1 in the unbound state. Showalter SA. Biomol NMR Assign; 2009 Dec 23; 3(2):179-81. PubMed ID: 19888685 [Abstract] [Full Text] [Related]
36. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Zheng H, Ji C, Gu S, Shi B, Wang J, Xie Y, Mao Y. Biochem Biophys Res Commun; 2005 Jun 17; 331(4):1401-7. PubMed ID: 15883030 [Abstract] [Full Text] [Related]
37. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II. Dubois MF, Marshall NF, Nguyen VT, Dahmus GK, Bonnet F, Dahmus ME, Bensaude O. Nucleic Acids Res; 1999 Mar 01; 27(5):1338-44. PubMed ID: 9973623 [Abstract] [Full Text] [Related]
38. Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Garavís M, González-Polo N, Allepuz-Fuster P, Louro JA, Fernández-Tornero C, Calvo O. Nucleic Acids Res; 2017 Mar 17; 45(5):2458-2471. PubMed ID: 27924005 [Abstract] [Full Text] [Related]
39. Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB. Nguyen BD, Chen HT, Kobor MS, Greenblatt J, Legault P, Omichinski JG. Biochemistry; 2003 Feb 18; 42(6):1460-9. PubMed ID: 12578358 [Abstract] [Full Text] [Related]
40. Identification of proteins interacting with the RNAPII FCP1 phosphatase: FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. Amente S, Napolitano G, Licciardo P, Monti M, Pucci P, Lania L, Majello B. FEBS Lett; 2005 Jan 31; 579(3):683-9. PubMed ID: 15670829 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]