These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 12595433

  • 1. Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis.
    Stothard DR, Toth GA, Batteiger BE.
    Infect Immun; 2003 Mar; 71(3):1200-8. PubMed ID: 12595433
    [Abstract] [Full Text] [Related]

  • 2. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism.
    Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo C, Dean D.
    J Bacteriol; 2006 Jan; 188(1):275-86. PubMed ID: 16352844
    [Abstract] [Full Text] [Related]

  • 3. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens.
    Nunes A, Gomes JP, Karunakaran KP, Brunham RC.
    PLoS One; 2015 Jan; 10(7):e0131695. PubMed ID: 26131720
    [Abstract] [Full Text] [Related]

  • 4. Variation outside variable segments of the major outer membrane protein distinguishes trachoma from urogenital isolates of the same serovar of Chlamydia trachomatis.
    Frost EH, Deslandes S, Gendron D, Bourgaux-Ramoisy D, Bourgaux P.
    Genitourin Med; 1995 Feb; 71(1):18-23. PubMed ID: 7538486
    [Abstract] [Full Text] [Related]

  • 5. Differentiation of Chlamydia trachomatis lymphogranuloma venereum-related serovars from other serovars using multiplex allele-specific polymerase chain reaction and high-resolution melting analysis.
    Cai L, Kong F, Toi C, van Hal S, Gilbert GL.
    Int J STD AIDS; 2010 Feb; 21(2):101-4. PubMed ID: 20089994
    [Abstract] [Full Text] [Related]

  • 6. Serotyping and genotyping of genital Chlamydia trachomatis isolates reveal variants of serovars Ba, G, and J as confirmed by omp1 nucleotide sequence analysis.
    Morré SA, Ossewaarde JM, Lan J, van Doornum GJ, Walboomers JM, MacLaren DM, Meijer CJ, van den Brule AJ.
    J Clin Microbiol; 1998 Feb; 36(2):345-51. PubMed ID: 9466739
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.
    Van Lent S, Creasy HH, Myers GS, Vanrompay D.
    J Mol Microbiol Biotechnol; 2016 Feb; 26(5):333-44. PubMed ID: 27463616
    [Abstract] [Full Text] [Related]

  • 9. Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein.
    Frost EH, Deslandes S, Veilleux S, Bourgaux-Ramoisy D.
    J Infect Dis; 1991 May; 163(5):1103-7. PubMed ID: 1673464
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A comparison of two methods for the diagnosis of lymphogranuloma venereum.
    Alexander S, Martin IMC, Ison C.
    J Med Microbiol; 2008 Aug; 57(Pt 8):962-965. PubMed ID: 18628496
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V, Gomes JP.
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [Abstract] [Full Text] [Related]

  • 14. Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene.
    Rodriguez P, Vekris A, de Barbeyrac B, Dutilh B, Bonnet J, Bebear C.
    J Clin Microbiol; 1991 Jun; 29(6):1132-6. PubMed ID: 1677940
    [Abstract] [Full Text] [Related]

  • 15. Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars.
    Yuan Y, Zhang YX, Watkins NG, Caldwell HD.
    Infect Immun; 1989 Apr; 57(4):1040-9. PubMed ID: 2466791
    [Abstract] [Full Text] [Related]

  • 16. Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants.
    Stothard DR, Boguslawski G, Jones RB.
    Infect Immun; 1998 Aug; 66(8):3618-25. PubMed ID: 9673241
    [Abstract] [Full Text] [Related]

  • 17. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates.
    Vasilevsky S, Stojanov M, Greub G, Baud D.
    Virulence; 2016 Aug; 7(1):11-22. PubMed ID: 26580416
    [Abstract] [Full Text] [Related]

  • 18. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing.
    Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, Lewis DA, Spratt BG, Unemo M, Persson K, Bjartling C, Brunham R, de Vries HJ, Morré SA, Speksnijder A, Bébéar CM, Clerc M, de Barbeyrac B, Parkhill J, Thomson NR.
    Nat Genet; 2012 Mar 11; 44(4):413-9, S1. PubMed ID: 22406642
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evaluation of serotyping using monoclonal antibodies and PCR-RFLP for Chlamydia trachomatis serotype identification.
    Choi TY, Kim DA, Seo YH.
    J Korean Med Sci; 2001 Feb 11; 16(1):15-9. PubMed ID: 11289394
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.