These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 12598617

  • 1. GTPase regulators and photoresponses in cones of the eastern chipmunk.
    Zhang X, Wensel TG, Kraft TW.
    J Neurosci; 2003 Feb 15; 23(4):1287-97. PubMed ID: 12598617
    [Abstract] [Full Text] [Related]

  • 2. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI.
    Nature; 2000 Feb 03; 403(6769):557-60. PubMed ID: 10676965
    [Abstract] [Full Text] [Related]

  • 3. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X, Wensel TG, Yuan C.
    Photochem Photobiol; 2006 Feb 03; 82(6):1452-60. PubMed ID: 16553462
    [Abstract] [Full Text] [Related]

  • 4. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein.
    Skiba NP, Hopp JA, Arshavsky VY.
    J Biol Chem; 2000 Oct 20; 275(42):32716-20. PubMed ID: 10973941
    [Abstract] [Full Text] [Related]

  • 5. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S, Tsushima S, Kawamura S.
    Proc Natl Acad Sci U S A; 2001 Nov 20; 98(24):14044-9. PubMed ID: 11707584
    [Abstract] [Full Text] [Related]

  • 6. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods.
    Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG.
    Proc Natl Acad Sci U S A; 1998 Apr 28; 95(9):5351-6. PubMed ID: 9560279
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S, Shimauchi-Matsukawa Y, Arinobu D, Kawamura S.
    Photochem Photobiol; 2007 Apr 28; 83(1):19-26. PubMed ID: 16706600
    [Abstract] [Full Text] [Related]

  • 10. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI, Rebrik TI.
    Adv Exp Med Biol; 2002 Apr 28; 514():179-203. PubMed ID: 12596922
    [Abstract] [Full Text] [Related]

  • 11. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability.
    He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG.
    J Biol Chem; 2000 Nov 24; 275(47):37093-100. PubMed ID: 10978345
    [Abstract] [Full Text] [Related]

  • 12. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations.
    Peng YW, Hao Y, Petters RM, Wong F.
    Nat Neurosci; 2000 Nov 24; 3(11):1121-7. PubMed ID: 11036269
    [Abstract] [Full Text] [Related]

  • 13. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit.
    Florio SK, Prusti RK, Beavo JA.
    J Biol Chem; 1996 Sep 27; 271(39):24036-47. PubMed ID: 8798640
    [Abstract] [Full Text] [Related]

  • 14. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H, Nymark S, Koskelainen A.
    Vision Res; 2008 Jan 27; 48(2):264-72. PubMed ID: 18166210
    [Abstract] [Full Text] [Related]

  • 15. Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein.
    Zhang H, Liu XH, Zhang K, Chen CK, Frederick JM, Prestwich GD, Baehr W.
    J Biol Chem; 2004 Jan 02; 279(1):407-13. PubMed ID: 14561760
    [Abstract] [Full Text] [Related]

  • 16. Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay.
    Chen CK, Woodruff ML, Chen FS, Shim H, Cilluffo MC, Fain GL.
    J Physiol; 2010 Sep 01; 588(Pt 17):3231-41. PubMed ID: 20603337
    [Abstract] [Full Text] [Related]

  • 17. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex.
    Skiba NP, Martemyanov KA, Elfenbein A, Hopp JA, Bohm A, Simonds WF, Arshavsky VY.
    J Biol Chem; 2001 Oct 05; 276(40):37365-72. PubMed ID: 11495924
    [Abstract] [Full Text] [Related]

  • 18. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas.
    Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S.
    Mol Vis; 1998 Dec 08; 4():27. PubMed ID: 9852166
    [Abstract] [Full Text] [Related]

  • 19. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y, Tachibanaki S, Kawamura S.
    J Biol Chem; 2014 Jan 31; 289(5):2651-7. PubMed ID: 24344136
    [Abstract] [Full Text] [Related]

  • 20. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors.
    Raport CJ, Lem J, Makino C, Chen CK, Fitch CL, Hobson A, Baylor D, Simon MI, Hurley JB.
    Invest Ophthalmol Vis Sci; 1994 Jun 31; 35(7):2932-47. PubMed ID: 8206711
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.