These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


561 related items for PubMed ID: 12600199

  • 21. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP, Krey GD.
    Biochemistry; 1994 Jul 19; 33(28):8505-14. PubMed ID: 8031784
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin.
    Frago S, Goñi G, Herguedas B, Peregrina JR, Serrano A, Perez-Dorado I, Molina R, Gómez-Moreno C, Hermoso JA, Martínez-Júlvez M, Mayhew SG, Medina M.
    Arch Biochem Biophys; 2007 Nov 15; 467(2):206-17. PubMed ID: 17904516
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Regulation of oxidation-reduction potentials through redox-linked ionization in the Y98H mutant of the Desulfovibrio vulgaris [Hildenborough] flavodoxin: direct proton nuclear magnetic resonance spectroscopic evidence for the redox-dependent shift in the pKa of Histidine-98.
    Chang FC, Swenson RP.
    Biochemistry; 1997 Jul 22; 36(29):9013-21. PubMed ID: 9220989
    [Abstract] [Full Text] [Related]

  • 26. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin.
    McCarthy AA, Walsh MA, Verma CS, O'Connell DP, Reinhold M, Yalloway GN, D'Arcy D, Higgins TM, Voordouw G, Mayhew SG.
    Biochemistry; 2002 Sep 10; 41(36):10950-62. PubMed ID: 12206666
    [Abstract] [Full Text] [Related]

  • 27. Evaluation of the role of specific acidic amino acid residues in electron transfer between the flavodoxin and cytochrome c3 from Desulfovibrio vulgaris.
    Feng Y, Swenson RP.
    Biochemistry; 1997 Nov 04; 36(44):13617-28. PubMed ID: 9354631
    [Abstract] [Full Text] [Related]

  • 28. Characterization of the complex of isoFMN and apoflavodoxin from Desulfovibrio vulgaris (Hildenborough).
    Yalloway GN, Mayhew SG.
    Biochem Soc Trans; 1998 Aug 04; 26(3):S215. PubMed ID: 9765934
    [No Abstract] [Full Text] [Related]

  • 29. Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation.
    Campos LA, Sancho J.
    Proteins; 2006 May 15; 63(3):581-94. PubMed ID: 16444751
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. How FMN binds to anabaena apoflavodoxin: a hydrophobic encounter at an open binding site.
    Lostao A, Daoudi F, Irún MP, Ramon A, Fernández-Cabrera C, Romero A, Sancho J.
    J Biol Chem; 2003 Jun 27; 278(26):24053-61. PubMed ID: 12682068
    [Abstract] [Full Text] [Related]

  • 32. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ, Swenson RP.
    Biochemistry; 1998 Jul 07; 37(27):9668-78. PubMed ID: 9657679
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Effects of phosphate on the binding of FMN and riboflavin by apoflavodoxin from Desulfovibrio vulgaris (Hildenborough).
    Pueyo JJ, Mayhew SG, Voordouw G.
    Biochem Soc Trans; 1992 Feb 07; 20(1):83S. PubMed ID: 1634005
    [No Abstract] [Full Text] [Related]

  • 36. Dissecting the energetics of the apoflavodoxin-FMN complex.
    Lostao A, El Harrous M, Daoudi F, Romero A, Parody-Morreale A, Sancho J.
    J Biol Chem; 2000 Mar 31; 275(13):9518-26. PubMed ID: 10734100
    [Abstract] [Full Text] [Related]

  • 37. Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5'-phosphate and riboflavin 3',5'-bisphosphate by apoflavodoxins.
    Pueyo JJ, Curley GP, Mayhew SG.
    Biochem J; 1996 Feb 01; 313 ( Pt 3)(Pt 3):855-61. PubMed ID: 8611166
    [Abstract] [Full Text] [Related]

  • 38. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ, von Wachenfeldt C, Haq I, Perkins J, Munro AW.
    Biochemistry; 2004 Oct 05; 43(39):12390-409. PubMed ID: 15449930
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function.
    Tegoni M, Gervais M, Desbois A.
    Biochemistry; 1997 Jul 22; 36(29):8932-46. PubMed ID: 9220981
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.