These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


97 related items for PubMed ID: 12604223

  • 1. NADPH-dependent reductases and polyol formation in human leukemia cell lines.
    Sato S, Secchi EF, Sakurai S, Ohta N, Fukase S, Lizak MJ.
    Chem Biol Interact; 2003 Feb 01; 143-144():363-71. PubMed ID: 12604223
    [Abstract] [Full Text] [Related]

  • 2. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells.
    Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M, Tsai JY, Kador PF.
    Invest Ophthalmol Vis Sci; 1999 Mar 01; 40(3):697-704. PubMed ID: 10067973
    [Abstract] [Full Text] [Related]

  • 3. Polyol pathway and NADPH-dependent reductases in dog leukocytes.
    Fukase S, Sato S, Mori K, Secchi EF, Kador PF.
    J Diabetes Complications; 1996 Mar 01; 10(6):304-13. PubMed ID: 8972381
    [Abstract] [Full Text] [Related]

  • 4. Rat kidney aldose reductase and aldehyde reductase and polyol production in rat kidney.
    Sato S.
    Am J Physiol; 1992 Nov 01; 263(5 Pt 2):F799-805. PubMed ID: 1443170
    [Abstract] [Full Text] [Related]

  • 5. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ, Secchi EF, Lee JW, Sato S, Kubo E, Akagi Y, Kador PF.
    Invest Ophthalmol Vis Sci; 1998 Dec 01; 39(13):2688-95. PubMed ID: 9856779
    [Abstract] [Full Text] [Related]

  • 6. 3-Fluoro-3-deoxy-D-galactose: a new probe for studies on sugar cataract.
    Secchi EF, Lizak MJ, Sato S, Kador PF.
    Curr Eye Res; 1999 Apr 01; 18(4):277-82. PubMed ID: 10372987
    [Abstract] [Full Text] [Related]

  • 7. Comparison of the effects of Zopolrestat and Sorbinil on lens myo-inositol influx.
    Beyer-Mears A, Diecke FP, Mistry K, Cruz E.
    Pharmacology; 1997 Feb 01; 54(2):76-83. PubMed ID: 9088040
    [Abstract] [Full Text] [Related]

  • 8. Purified rat lens aldose reductase. Polyol production in vitro and its inhibition by aldose reductase inhibitors.
    Kador PF, Kinoshita JH, Brittain DR, Mirrlees DJ, Sennitt CM, Stribling D.
    Biochem J; 1986 Nov 15; 240(1):233-7. PubMed ID: 3030278
    [Abstract] [Full Text] [Related]

  • 9. CP-45,634: a novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats.
    Peterson MJ, Sarges R, Aldinger CE, MacDonald DP.
    Metabolism; 1979 Apr 15; 28(4 Suppl 1):456-61. PubMed ID: 122297
    [Abstract] [Full Text] [Related]

  • 10. Effect of pyruvate on lens myo-inositol transport and polyol formation in diabetic cataract.
    Beyer-Mears A, Diecke FP, Mistry K, Ellison C, Cruz E.
    Pharmacology; 1997 Aug 15; 55(2):78-86. PubMed ID: 9323307
    [Abstract] [Full Text] [Related]

  • 11. Purification and properties of aldose reductase and aldehyde reductase from EHS tumor cells.
    Tanimoto T, Sato S, Kador PF.
    Biochem Pharmacol; 1990 Feb 01; 39(3):445-53. PubMed ID: 2106320
    [Abstract] [Full Text] [Related]

  • 12. Evidence for existence of polyol pathway in cultured rat mesangial cells.
    Kikkawa R, Umemura K, Haneda M, Arimura T, Ebata K, Shigeta Y.
    Diabetes; 1987 Feb 01; 36(2):240-3. PubMed ID: 3100369
    [Abstract] [Full Text] [Related]

  • 13. NADPH-dependent reductases in dog thyroid: comparison of a third enzyme "glyceraldehyde reductase" to dog thyroid aldehyde reductase.
    Schaffhauser MA, Sato S, Kador PF.
    Int J Biochem Cell Biol; 1996 Mar 01; 28(3):275-84. PubMed ID: 8920636
    [Abstract] [Full Text] [Related]

  • 14. Polyol accumulation in cultured human lens epithelial cells.
    Lin LR, Reddy VN, Giblin FJ, Kador PF, Kinoshita JH.
    Exp Eye Res; 1991 Jan 01; 52(1):93-100. PubMed ID: 1907924
    [Abstract] [Full Text] [Related]

  • 15. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats.
    Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE, Cicerchi C, Li N, Kuwabara M, Roncal-Jimenez CA, Johnson RJ, Lanaspa MA.
    J Biol Chem; 2019 Mar 15; 294(11):4272-4281. PubMed ID: 30651350
    [Abstract] [Full Text] [Related]

  • 16. Determination of aldose reductase activity in the eye by localized magnetic resonance spectroscopy.
    Lizak MJ, Mori K, Kador PF.
    J Ocul Pharmacol Ther; 2001 Oct 15; 17(5):475-83. PubMed ID: 11765152
    [Abstract] [Full Text] [Related]

  • 17. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism.
    Niimi N, Yako H, Takaku S, Kato H, Matsumoto T, Nishito Y, Watabe K, Ogasawara S, Mizukami H, Yagihashi S, Chung SK, Sango K.
    J Neurochem; 2018 Mar 15; 144(6):710-722. PubMed ID: 29238976
    [Abstract] [Full Text] [Related]

  • 18. Glucose-mediated induction of TGF-beta 1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent.
    Wong TY, Phillips AO, Witowski J, Topley N.
    Kidney Int; 2003 Apr 15; 63(4):1404-16. PubMed ID: 12631356
    [Abstract] [Full Text] [Related]

  • 19. Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney.
    Ohta M, Tanimoto T, Tanaka A.
    Biochim Biophys Acta; 1991 Jul 12; 1078(3):395-403. PubMed ID: 1907200
    [Abstract] [Full Text] [Related]

  • 20. Aldose reductase in human retinal pigment epithelial cells.
    Sato S, Lin LR, Reddy VN, Kador PF.
    Exp Eye Res; 1993 Aug 12; 57(2):235-41. PubMed ID: 8405190
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.