These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 12606941

  • 21. The C-terminal Region and SUMOylation of Cockayne Syndrome Group B Protein Play Critical Roles in Transcription-coupled Nucleotide Excision Repair.
    Sin Y, Tanaka K, Saijo M.
    J Biol Chem; 2016 Jan 15; 291(3):1387-97. PubMed ID: 26620705
    [Abstract] [Full Text] [Related]

  • 22. Functional crosstalk between hOgg1 and the helicase domain of Cockayne syndrome group B protein.
    Tuo J, Chen C, Zeng X, Christiansen M, Bohr VA.
    DNA Repair (Amst); 2002 Nov 03; 1(11):913-27. PubMed ID: 12531019
    [Abstract] [Full Text] [Related]

  • 23. The relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice.
    Wijnhoven SW, Kool HJ, van Oostrom CT, Beems RB, Mullenders LH, van Zeeland AA, van der Horst GT, Vrieling H, van Steeg H.
    Cancer Res; 2000 Oct 15; 60(20):5681-7. PubMed ID: 11059760
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Repair of oxidatively generated DNA damage in Cockayne syndrome.
    Khobta A, Epe B.
    Mech Ageing Dev; 2013 Oct 15; 134(5-6):253-60. PubMed ID: 23518175
    [Abstract] [Full Text] [Related]

  • 32. Complementation of the oxidatively damaged DNA repair defect in Cockayne syndrome A and B cells by Escherichia coli formamidopyrimidine DNA glycosylase.
    Ropolo M, Degan P, Foresta M, D'Errico M, Lasigliè D, Dogliotti E, Casartelli G, Zupo S, Poggi A, Frosina G.
    Free Radic Biol Med; 2007 Jun 15; 42(12):1807-17. PubMed ID: 17512460
    [Abstract] [Full Text] [Related]

  • 33. Accumulation of mitochondrial DNA damage and bioenergetic dysfunction in CSB defective cells.
    Osenbroch PØ, Auk-Emblem P, Halsne R, Strand J, Forstrøm RJ, van der Pluijm I, Eide L.
    FEBS J; 2009 May 15; 276(10):2811-21. PubMed ID: 19389114
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product.
    Sunesen M, Stevnsner T, Brosh RM, Dianov GL, Bohr VA.
    Oncogene; 2002 May 16; 21(22):3571-8. PubMed ID: 12032859
    [Abstract] [Full Text] [Related]

  • 39. Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome.
    Horibata K, Iwamoto Y, Kuraoka I, Jaspers NG, Kurimasa A, Oshimura M, Ichihashi M, Tanaka K.
    Proc Natl Acad Sci U S A; 2004 Oct 26; 101(43):15410-5. PubMed ID: 15486090
    [Abstract] [Full Text] [Related]

  • 40. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells.
    Dregoesc D, Rybak AP, Rainbow AJ.
    DNA Repair (Amst); 2007 May 01; 6(5):588-601. PubMed ID: 17196445
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.