These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 12609872

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase.
    Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF.
    J Neurosci; 2000 Jan 01; 20(1):89-102. PubMed ID: 10627585
    [Abstract] [Full Text] [Related]

  • 4. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.
    Barria A, Muller D, Derkach V, Griffith LC, Soderling TR.
    Science; 1997 Jun 27; 276(5321):2042-5. PubMed ID: 9197267
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors.
    Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA, Soderling TR.
    Proc Natl Acad Sci U S A; 1995 Feb 28; 92(5):1376-80. PubMed ID: 7877986
    [Abstract] [Full Text] [Related]

  • 8. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M.
    Neuroscience; 2005 Feb 28; 136(2):397-403. PubMed ID: 16182449
    [Abstract] [Full Text] [Related]

  • 9. Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission.
    Pereda AE, Bell TD, Chang BH, Czernik AJ, Nairn AC, Soderling TR, Faber DS.
    Proc Natl Acad Sci U S A; 1998 Oct 27; 95(22):13272-7. PubMed ID: 9789078
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul 27; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Activation of CA(2+)/calmodulin-dependent protein kinase IV in cultured rat hippocampal neurons.
    Kasahara J, Fukunaga K, Miyamoto E.
    J Neurosci Res; 2000 Mar 01; 59(5):594-600. PubMed ID: 10686587
    [Abstract] [Full Text] [Related]

  • 15. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors.
    Carvalho AL, Kameyama K, Huganir RL.
    J Neurosci; 1999 Jun 15; 19(12):4748-54. PubMed ID: 10366608
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regulation of AMPA receptors by phosphorylation.
    Carvalho AL, Duarte CB, Carvalho AP.
    Neurochem Res; 2000 Oct 15; 25(9-10):1245-55. PubMed ID: 11059799
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Learning mechanisms: the case for CaM-KII.
    Lisman J, Malenka RC, Nicoll RA, Malinow R.
    Science; 1997 Jun 27; 276(5321):2001-2. PubMed ID: 9221509
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.