These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 1261

  • 21. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872.
    Griffin M, Trudgill PW.
    Biochem J; 1972 Sep; 129(3):595-603. PubMed ID: 4349113
    [Abstract] [Full Text] [Related]

  • 22. Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor.
    Kohl A, Srinivasamurthy V, Böttcher D, Kabisch J, Bornscheuer UT.
    Enzyme Microb Technol; 2018 Jan; 108():53-58. PubMed ID: 29108627
    [Abstract] [Full Text] [Related]

  • 23. Mechanistic studies on cyclohexanone oxygenase.
    Ryerson CC, Ballou DP, Walsh C.
    Biochemistry; 1982 May 25; 21(11):2644-55. PubMed ID: 7093214
    [Abstract] [Full Text] [Related]

  • 24. Mechanistic deductions from isotope effects in multireactant enzyme mechanisms.
    Cook PF, Cleland WW.
    Biochemistry; 1981 Mar 31; 20(7):1790-6. PubMed ID: 7013799
    [Abstract] [Full Text] [Related]

  • 25. Determination of cyclohexanol in urine and its use in environmental monitoring of cyclohexanone exposure.
    Ong CN, Sia GL, Chia SE, Phoon WH, Tan KT.
    J Anal Toxicol; 1991 Mar 31; 15(1):13-6. PubMed ID: 2046335
    [Abstract] [Full Text] [Related]

  • 26. Efficient Oxidation of Cyclohexane over Bulk Nickel Oxide under Mild Conditions.
    Alnefaie RS, Abboud M, Alhanash A, Hamdy MS.
    Molecules; 2022 May 14; 27(10):. PubMed ID: 35630625
    [Abstract] [Full Text] [Related]

  • 27. Assessing the substrate selectivities and enantioselectivities of eight novel Baeyer-Villiger monooxygenases toward alkyl-substituted cyclohexanones.
    Kyte BG, Rouvière P, Cheng Q, Stewart JD.
    J Org Chem; 2004 Jan 09; 69(1):12-7. PubMed ID: 14703373
    [Abstract] [Full Text] [Related]

  • 28. Selective oxidation of cyclohexanol and 2-cyclohexen-1-ol on O/Au(111): the effect of molecular structure.
    Liu X, Friend CM.
    Langmuir; 2010 Nov 02; 26(21):16552-7. PubMed ID: 20973586
    [Abstract] [Full Text] [Related]

  • 29. Utilization of cyclohexanone and related substances by a Nocardia sp.
    Murray JR, Scheikowski TA, MacRae IC.
    Antonie Van Leeuwenhoek; 1974 Nov 02; 40(1):17-24. PubMed ID: 4545196
    [No Abstract] [Full Text] [Related]

  • 30. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol.
    Hoschek A, Heuschkel I, Schmid A, Bühler B, Karande R, Bühler K.
    Bioresour Technol; 2019 Jun 02; 282():171-178. PubMed ID: 30861446
    [Abstract] [Full Text] [Related]

  • 31. Utilization of cyclohexanol by bacteria in a tropical estuarine water.
    Ilori MO.
    Folia Microbiol (Praha); 1999 Jun 02; 44(5):553-6. PubMed ID: 10997136
    [Abstract] [Full Text] [Related]

  • 32. Quinoprotein alcohol dehydrogenase from a non-methylotroph, Acinetobacter calcoaceticus.
    Duine JA, Frank J.
    J Gen Microbiol; 1981 Feb 02; 122(2):201-9. PubMed ID: 7033448
    [Abstract] [Full Text] [Related]

  • 33. MOF-808 as a Highly Active Catalyst for the Diastereoselective Reduction of Substituted Cyclohexanones.
    Mautschke HH, Llabrés I Xamena FX.
    Molecules; 2022 Sep 25; 27(19):. PubMed ID: 36234853
    [Abstract] [Full Text] [Related]

  • 34. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus.
    Doo EH, Lee WH, Seo HS, Seo JH, Park JB.
    J Biotechnol; 2009 Jun 15; 142(2):164-9. PubMed ID: 19397940
    [Abstract] [Full Text] [Related]

  • 35. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL 1.
    Norris DB, Trudgill PW.
    Biochem J; 1972 Nov 15; 130(1):30P. PubMed ID: 4144074
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Docking of cyclohexanol-derivatives into the active site of liver alcohol dehydrogenase. Using computer graphics and energy minimization.
    Horjales E, Brändén CI.
    J Biol Chem; 1985 Dec 15; 260(29):15445-51. PubMed ID: 2933400
    [Abstract] [Full Text] [Related]

  • 39. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A.
    Biotechnol Bioeng; 2016 Jan 15; 113(1):52-61. PubMed ID: 26153144
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.