These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Functional coupling between nucleoside diphosphate kinase of the outer mitochondrial compartment and oxidative phosphorylation. Lipskaya TY, Voinova VV. Biochemistry (Mosc); 2005 Dec; 70(12):1354-62. PubMed ID: 16417458 [Abstract] [Full Text] [Related]
23. Is there the creatine kinase equilibrium in working heart cells? Saks VA, Aliev MK. Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521 [Abstract] [Full Text] [Related]
24. Structural changes of mitochondrial creatine kinase upon binding of ADP, ATP, or Pi, observed by reaction-induced infrared difference spectra. Granjon T, Vacheron MJ, Vial C, Buchet R. Biochemistry; 2001 Mar 06; 40(9):2988-94. PubMed ID: 11258911 [Abstract] [Full Text] [Related]
25. Mathematical modeling of intracellular transport processes and the creatine kinase systems: a probability approach. Aliev MK, Saks VA. Mol Cell Biochem; 1994 Mar 06; 133-134():333-46. PubMed ID: 7808463 [Abstract] [Full Text] [Related]
33. Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation. Erickson-Viitanen S, Geiger PJ, Viitanen P, Bessman SP. J Biol Chem; 1982 Dec 10; 257(23):14405-11. PubMed ID: 7142218 [Abstract] [Full Text] [Related]
34. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture. Seraydarian MW. Recent Adv Stud Cardiac Struct Metab; 1975 Dec 10; 8():181-90. PubMed ID: 1215636 [Abstract] [Full Text] [Related]
35. Kinetics of ATP-dependent Mg2+ flux in mitochondria. Kun E. Biochemistry; 1976 Jun 01; 15(11):2328-36. PubMed ID: 1276140 [Abstract] [Full Text] [Related]
36. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities. Carreira J, Muñoz E. Mol Cell Biochem; 1975 Nov 14; 9(2):85-95. PubMed ID: 127930 [Abstract] [Full Text] [Related]
37. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK. Mol Cell Biochem; 1998 Jul 14; 184(1-2):249-89. PubMed ID: 9746325 [Abstract] [Full Text] [Related]
38. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Aliev MK, Saks VA. Biochim Biophys Acta; 1993 Jul 26; 1143(3):291-300. PubMed ID: 8329438 [Abstract] [Full Text] [Related]
39. [Functional coupling of creatine phosphokinase and adenylate kinase with adenine nucleotide translocase and its role in regulation of heart mitochondrial respiration]. Dzheia PP, Kal'venas AA, Toleĭkis AI, Prashkiavichius AK. Biokhimiia; 1983 Sep 26; 48(9):1471-8. PubMed ID: 6313078 [Abstract] [Full Text] [Related]
40. Effects of magnesium on the kinetic properties of bovine heart glycogen synthase D. Nakai C, Thomas JA. J Biol Chem; 1975 Jun 10; 250(11):4081-6. PubMed ID: 805137 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]