These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


304 related items for PubMed ID: 12618319

  • 1. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.
    Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C.
    Hear Res; 2003 Mar; 177(1-2):71-80. PubMed ID: 12618319
    [Abstract] [Full Text] [Related]

  • 2. The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
    Chen J, Zhao HB.
    Neuroscience; 2014 Apr 18; 265():137-46. PubMed ID: 24480364
    [Abstract] [Full Text] [Related]

  • 3. Inwardly rectifying potassium channel Kir4.1 is localized at the calyx endings of vestibular afferents.
    Udagawa T, Tatsumi N, Tachibana T, Negishi Y, Saijo H, Kobayashi T, Yaguchi Y, Kojima H, Moriyama H, Okabe M.
    Neuroscience; 2012 Jul 26; 215():209-16. PubMed ID: 22546335
    [Abstract] [Full Text] [Related]

  • 4. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing.
    Cazals Y, Bévengut M, Zanella S, Brocard F, Barhanin J, Gestreau C.
    Nat Commun; 2015 Nov 09; 6():8780. PubMed ID: 26549439
    [Abstract] [Full Text] [Related]

  • 5. Morphological alterations in the inner ear of the arylsulfatase A-deficient mouse.
    Coenen R, Gieselmann V, Lüllmann-Rauch R.
    Acta Neuropathol; 2001 May 09; 101(5):491-8. PubMed ID: 11484821
    [Abstract] [Full Text] [Related]

  • 6. Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells.
    Zou J, Zhang Y, Yin S, Wu H, Pyykkö I.
    J Neurosci Res; 2009 Jan 09; 87(1):141-9. PubMed ID: 18752300
    [Abstract] [Full Text] [Related]

  • 7. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation.
    Nadol JB.
    Otolaryngol Head Neck Surg; 1997 Sep 09; 117(3 Pt 1):220-8. PubMed ID: 9334769
    [Abstract] [Full Text] [Related]

  • 8. [EAST/SeSAME syndrome and functional expression of inward rectifier potassium channel Kir4.1 in the inner ear].
    Chen J, Zhao H.
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Jul 09; 29(14):1318-22. PubMed ID: 26672256
    [Abstract] [Full Text] [Related]

  • 9. An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential.
    Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T, Kurachi Y.
    J Neurosci; 1997 Jun 15; 17(12):4711-21. PubMed ID: 9169531
    [Abstract] [Full Text] [Related]

  • 10. Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear.
    Jin Z, Wei D, Järlebark L.
    Neuroreport; 2006 Apr 03; 17(5):475-9. PubMed ID: 16543810
    [Abstract] [Full Text] [Related]

  • 11. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
    Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P.
    Neuroscience; 2010 Mar 17; 166(2):397-407. PubMed ID: 20074622
    [Abstract] [Full Text] [Related]

  • 12. Expression of an inwardly rectifying K(+) channel, Kir4.1, in satellite cells of rat cochlear ganglia.
    Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y.
    Am J Physiol; 1999 Oct 17; 277(4):C638-44. PubMed ID: 10516093
    [Abstract] [Full Text] [Related]

  • 13. LRRC8/VRAC volume-regulated anion channels are crucial for hearing.
    Knecht DA, Zeziulia M, Bhavsar MB, Puchkov D, Maier H, Jentsch TJ.
    J Biol Chem; 2024 Jul 17; 300(7):107436. PubMed ID: 38838775
    [Abstract] [Full Text] [Related]

  • 14. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
    Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y.
    Eur J Neurosci; 2004 Jan 17; 19(1):76-84. PubMed ID: 14750965
    [Abstract] [Full Text] [Related]

  • 15. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M, Anniko M.
    Acta Otolaryngol; 2010 Feb 17; 130(2):196-203. PubMed ID: 20095091
    [Abstract] [Full Text] [Related]

  • 16. Cochlear morphology in the developing inner ear of the porcine model of spontaneous deafness.
    Chen W, Hao QQ, Ren LL, Ren W, Lin HS, Guo WW, Yang SM.
    BMC Neurosci; 2018 May 02; 19(1):28. PubMed ID: 29716524
    [Abstract] [Full Text] [Related]

  • 17. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis.
    Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M.
    Sci Rep; 2024 Feb 06; 14(1):3038. PubMed ID: 38321040
    [Abstract] [Full Text] [Related]

  • 18. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea.
    Liu T, Li G, Noble KV, Li Y, Barth JL, Schulte BA, Lang H.
    Neurobiol Aging; 2019 Aug 06; 80():210-222. PubMed ID: 31220650
    [Abstract] [Full Text] [Related]

  • 19. Distribution of beta-tubulin in guinea pig inner ear.
    Du X, Yoo T, Mora R.
    ORL J Otorhinolaryngol Relat Spec; 2003 Aug 06; 65(1):7-16. PubMed ID: 12624500
    [Abstract] [Full Text] [Related]

  • 20. Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
    Jin Z, Ulfendahl M, Järlebark L.
    Eur J Neurosci; 2008 Jan 06; 27(1):145-54. PubMed ID: 18093167
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.