These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
306 related items for PubMed ID: 12630467
1. Reactivity of Fe(II) species associated with clay minerals. Hofstetter TB, Schwarzenbach RP, Haderlein SB. Environ Sci Technol; 2003 Feb 01; 37(3):519-28. PubMed ID: 12630467 [Abstract] [Full Text] [Related]
2. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Hofstetter TB, Neumann A, Schwarzenbach RP. Environ Sci Technol; 2006 Jan 01; 40(1):235-42. PubMed ID: 16433357 [Abstract] [Full Text] [Related]
6. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Schaefer MV, Gorski CA, Scherer MM. Environ Sci Technol; 2011 Jan 15; 45(2):540-5. PubMed ID: 21138293 [Abstract] [Full Text] [Related]
7. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Neumann A, Wu L, Li W, Beard BL, Johnson CM, Rosso KM, Frierdich AJ, Scherer MM. Environ Sci Technol; 2015 Mar 03; 49(5):2786-95. PubMed ID: 25671351 [Abstract] [Full Text] [Related]
8. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals. Liao W, Ye Z, Yuan S, Cai Q, Tong M, Qian A, Cheng D. Environ Sci Technol; 2019 Dec 03; 53(23):13767-13775. PubMed ID: 31702131 [Abstract] [Full Text] [Related]
9. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. Neumann A, Olson TL, Scherer MM. Environ Sci Technol; 2013 Jul 02; 47(13):6969-77. PubMed ID: 23517074 [Abstract] [Full Text] [Related]
10. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals. Joe-Wong C, Brown GE, Maher K. Environ Sci Technol; 2017 Sep 05; 51(17):9817-9825. PubMed ID: 28783317 [Abstract] [Full Text] [Related]
12. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization. Zhao Z, Yuan Q, Meng Y, Luan F. Environ Sci Pollut Res Int; 2022 Jun 05; 29(29):44874-44882. PubMed ID: 35138538 [Abstract] [Full Text] [Related]
15. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals. Nzengung VA, Castillo RM, Gates WP, Mills GL. Environ Sci Technol; 2001 Jun 01; 35(11):2244-51. PubMed ID: 11414025 [Abstract] [Full Text] [Related]
16. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Sharma P, Kappler A. J Contam Hydrol; 2011 Nov 01; 126(3-4):216-25. PubMed ID: 22115087 [Abstract] [Full Text] [Related]
17. Antibacterial Mechanisms of Reduced Iron-Containing Smectite-Illite Clay Minerals. Guo D, Xia Q, Zeng Q, Wang X, Dong H. Environ Sci Technol; 2021 Nov 16; 55(22):15256-15265. PubMed ID: 34723508 [Abstract] [Full Text] [Related]
18. Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1. Ilgen AG, Trainor TP. Environ Sci Technol; 2012 Jan 17; 46(2):843-51. PubMed ID: 22136137 [Abstract] [Full Text] [Related]
19. Critical Role of Mineral Fe(IV) Formation in Low Hydroxyl Radical Yields during Fe(II)-Bearing Clay Mineral Oxygenation. Yu C, Ji W, Li X, Yuan S, Zhang P, Pu S. Environ Sci Technol; 2024 Jun 04; 58(22):9669-9678. PubMed ID: 38771965 [Abstract] [Full Text] [Related]