These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 12636070
1. Online sensing of volatile organic compounds in groundwater using mid-infrared fibre optic evanescent wave spectroscopy: a pilot scale test. Steiner H, Staubmann K, Allabashi R, Fleischmann N, Katzir A, Reichlin Y, Milzaikoff B. Water Sci Technol; 2003; 47(2):121-6. PubMed ID: 12636070 [Abstract] [Full Text] [Related]
2. In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Steiner H, Jakusch M, Kraft M, Karlowatz M, Baumann T, Niessner R, Konz W, Brandenburg A, Michel K, Boussard-Plédel C, Bureau B, Lucas J, Reichlin Y, Katzir A, Fleischmann N, Staubmann K, Allabashi R, Bayona JM, Mizaikoff B. Appl Spectrosc; 2003 Jun; 57(6):607-13. PubMed ID: 14658691 [Abstract] [Full Text] [Related]
3. Membrane-introduced infrared spectroscopic chemical sensing method for the detection of volatile organic compounds in aqueous solutions. Yang J, Ramesh A. Analyst; 2005 Mar; 130(3):397-403. PubMed ID: 15724171 [Abstract] [Full Text] [Related]
4. Performance of semipermeable membrane devices for sampling of organic contaminants in groundwater. Vrana B, Paschke H, Paschke A, Popp P, Schuurmann G. J Environ Monit; 2005 May; 7(5):500-8. PubMed ID: 15877173 [Abstract] [Full Text] [Related]
5. Infrared optical sensors for water quality monitoring. Mizaikoff B. Water Sci Technol; 2003 May; 47(2):35-42. PubMed ID: 12636060 [Abstract] [Full Text] [Related]
6. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater. Buerck J, Roth S, Kraemer K, Scholz M, Klaas N. J Hazard Mater; 2001 May 07; 83(1-2):11-28. PubMed ID: 11267742 [Abstract] [Full Text] [Related]
7. Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank. Cápiro NL, Stafford BP, Rixey WG, Bedient PB, Alvarez PJ. Water Res; 2007 Feb 07; 41(3):656-64. PubMed ID: 17126874 [Abstract] [Full Text] [Related]
8. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source. Huang Z, Zhou W, Yu YJ, Zhang AQ, Han SK, Wang LS. J Environ Sci (China); 2004 Feb 07; 16(1):56-60. PubMed ID: 14971453 [Abstract] [Full Text] [Related]
9. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany. Richter D, Massmann G, Taute T, Duennbier U. J Contam Hydrol; 2009 May 12; 106(3-4):183-94. PubMed ID: 19371963 [Abstract] [Full Text] [Related]
10. Direct screening and confirmation of priority volatile organic pollutants in drinking water. Caro J, Serrano A, Gallego M. J Chromatogr A; 2007 Jan 05; 1138(1-2):244-50. PubMed ID: 17092514 [Abstract] [Full Text] [Related]
11. Assessment of a groundwater contamination with vinyl chloride (VC) and precursor volatile organic compounds (VOC) by use of a geographical information system (GIS). Kistemann T, Hundhausen J, Herbst S, Classen T, Färber H. Int J Hyg Environ Health; 2008 Jul 05; 211(3-4):308-17. PubMed ID: 17869578 [Abstract] [Full Text] [Related]
12. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances. Pang L, Close M, Goltz M, Noonan M, Sinton L. J Contam Hydrol; 2005 Apr 05; 77(3):165-94. PubMed ID: 15763354 [Abstract] [Full Text] [Related]
13. Time and space patterns of volatile organic compounds in a sewage treatment plant. Escalas A, Guadayol JM, Cortina M, Rivera J, Caixach J. Water Res; 2003 Sep 05; 37(16):3913-20. PubMed ID: 12909110 [Abstract] [Full Text] [Related]
14. Non-linear and non-constant variance calibration curves in analysis of volatile organic compounds for testing of water by the purge-and-trap method coupled with gas chromatography/mass spectrometry. Lavagnini I, Favaro G, Magno F. Rapid Commun Mass Spectrom; 2004 Sep 05; 18(12):1383-91. PubMed ID: 15174195 [Abstract] [Full Text] [Related]
15. On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer. Langergraber G, Gupta JK, Pressl A, Hofstaedter F, Lettl W, Weingartner A, Fleischmann N. Water Sci Technol; 2004 Sep 05; 50(10):73-80. PubMed ID: 15656298 [Abstract] [Full Text] [Related]
16. Fast analysis of volatile organic compounds and disinfection by-products in drinking water using solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry. Niri VH, Bragg L, Pawliszyn J. J Chromatogr A; 2008 Aug 08; 1201(2):222-7. PubMed ID: 18400229 [Abstract] [Full Text] [Related]
17. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Bauer M, Fulda B, Blodau C. Sci Total Environ; 2008 Aug 15; 401(1-3):109-20. PubMed ID: 18495216 [Abstract] [Full Text] [Related]
18. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Foose GJ. Waste Manag; 2010 Aug 15; 30(8-9):1577-86. PubMed ID: 20304623 [Abstract] [Full Text] [Related]
19. Impact of geochemical stressors on shallow groundwater quality. An YJ, Kampbell DH, Jeong SW, Jewell KP, Masoner JR. Sci Total Environ; 2005 Sep 15; 348(1-3):257-66. PubMed ID: 16162329 [Abstract] [Full Text] [Related]
20. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions. Tillman FD, Smith JA. J Contam Hydrol; 2004 Nov 15; 75(1-2):71-90. PubMed ID: 15385099 [Abstract] [Full Text] [Related] Page: [Next] [New Search]