These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


247 related items for PubMed ID: 12637024

  • 1. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins.
    Vickaryous NK, Teh EM, Stewart B, Dolphin PJ, Too CK, McLeod RS.
    Biochim Biophys Acta; 2003 Mar 21; 1646(1-2):164-72. PubMed ID: 12637024
    [Abstract] [Full Text] [Related]

  • 2. Analysis of human lecithin-cholesterol acyltransferase activity by carboxyl-terminal truncation.
    Lee YP, Adimoolam S, Liu M, Subbaiah PV, Glenn K, Jonas A.
    Biochim Biophys Acta; 1997 Feb 18; 1344(3):250-61. PubMed ID: 9059515
    [Abstract] [Full Text] [Related]

  • 3. Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity.
    O K, Hill JS, Pritchard PH.
    Biochim Biophys Acta; 1995 Jan 20; 1254(2):193-7. PubMed ID: 7827124
    [Abstract] [Full Text] [Related]

  • 4. Surface plasmon resonance biosensor studies of human wild-type and mutant lecithin cholesterol acyltransferase interactions with lipoproteins.
    Jin L, Shieh JJ, Grabbe E, Adimoolam S, Durbin D, Jonas A.
    Biochemistry; 1999 Nov 23; 38(47):15659-65. PubMed ID: 10569952
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Recombinant lecithin:cholesterol acyltransferase containing a Thr123-->Ile mutation esterifies cholesterol in low density lipoprotein but not in high density lipoprotein.
    O K, Hill JS, Wang X, Pritchard PH.
    J Lipid Res; 1993 Jan 23; 34(1):81-8. PubMed ID: 8445345
    [Abstract] [Full Text] [Related]

  • 7. Site-directed mutagenesis and structure-function analysis of the human apolipoprotein A-I. Relation between lecithin-cholesterol acyltransferase activation and lipid binding.
    Minnich A, Collet X, Roghani A, Cladaras C, Hamilton RL, Fielding CJ, Zannis VI.
    J Biol Chem; 1992 Aug 15; 267(23):16553-60. PubMed ID: 1644835
    [Abstract] [Full Text] [Related]

  • 8. Relationship between structure and biochemical phenotype of lecithin:cholesterol acyltransferase (LCAT) mutants causing fish-eye disease.
    Vanloo B, Peelman F, Deschuymere K, Taveirne J, Verhee A, Gouyette C, Labeur C, Vandekerckhove J, Tavernier J, Rosseneu M.
    J Lipid Res; 2000 May 15; 41(5):752-61. PubMed ID: 10787436
    [Abstract] [Full Text] [Related]

  • 9. Identification of a domain of lecithin-cholesterol acyltransferase that is involved in interfacial recognition.
    Adimoolam S, Jonas A.
    Biochem Biophys Res Commun; 1997 Mar 27; 232(3):783-7. PubMed ID: 9126354
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo.
    Scott BR, McManus DC, Franklin V, McKenzie AG, Neville T, Sparks DL, Marcel YL.
    J Biol Chem; 2001 Dec 28; 276(52):48716-24. PubMed ID: 11602583
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Characterization of functional residues in the interfacial recognition domain of lecithin cholesterol acyltransferase (LCAT).
    Peelman F, Vanloo B, Perez-Mendez O, Decout A, Verschelde JL, Labeur C, Vinaimont N, Verhee A, Duverger N, Brasseur R, Vandekerckhove J, Tavernier J, Rosseneu M.
    Protein Eng; 1999 Jan 28; 12(1):71-8. PubMed ID: 10065713
    [Abstract] [Full Text] [Related]

  • 16. Binding affinity and reactivity of lecithin cholesterol acyltransferase with native lipoproteins.
    Kosek AB, Durbin D, Jonas A.
    Biochem Biophys Res Commun; 1999 May 19; 258(3):548-51. PubMed ID: 10329423
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effect of mutations of N- and C-terminal charged residues on the activity of LCAT.
    Peelman F, Vanloo B, Verschelde JL, Labeur C, Caster H, Taveirne J, Verhee A, Duverger N, Vandekerckhove J, Tavernier J, Rosseneu M.
    J Lipid Res; 2001 Apr 19; 42(4):471-9. PubMed ID: 11290818
    [Abstract] [Full Text] [Related]

  • 19. Role of glutamic acid residues 154, 155, and 165 of lecithin:cholesterol acyltransferase in cholesterol esterification and phospholipase A2 activities.
    Wang J, DeLozier JA, Gebre AK, Dolphin PJ, Parks JS.
    J Lipid Res; 1998 Jan 19; 39(1):51-8. PubMed ID: 9469585
    [Abstract] [Full Text] [Related]

  • 20. Probing the 121-136 domain of lecithin:cholesterol acyltransferase using antibodies.
    Murray KR, Nair MP, Ayyobi AF, Hill JS, Pritchard PH, Lacko AG.
    Arch Biochem Biophys; 2001 Jan 15; 385(2):267-75. PubMed ID: 11368007
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.