These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 12641281
1. Modeling of adsorption in hydrophobic interaction chromatography systems using a preferential interaction quadratic isotherm. Xia F, Nagrath D, Cramer SM. J Chromatogr A; 2003 Mar 07; 989(1):47-54. PubMed ID: 12641281 [Abstract] [Full Text] [Related]
2. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems. Nagrath D, Xia F, Cramer SM. J Chromatogr A; 2011 Mar 04; 1218(9):1219-26. PubMed ID: 21255785 [Abstract] [Full Text] [Related]
3. Isotherm type shift of hydrophobic interaction adsorption and its effect on chromatographic behavior. Meng Q, Wang J, Ma G, Su Z. J Chromatogr Sci; 2013 Feb 04; 51(2):173-80. PubMed ID: 22815210 [Abstract] [Full Text] [Related]
4. Mathematical modeling of adsorption isotherms in mixed salt systems in hydrophobic interaction chromatography. Hackemann E, Hasse H. Biotechnol Prog; 2018 Sep 04; 34(5):1251-1260. PubMed ID: 30009582 [Abstract] [Full Text] [Related]
5. Protein interactions in hydrophobic charge induction chromatography (HCIC). Ghose S, Hubbard B, Cramer SM. Biotechnol Prog; 2005 Sep 04; 21(2):498-508. PubMed ID: 15801790 [Abstract] [Full Text] [Related]
6. Effect of salts and temperature on the adsorption of bovine serum albumin on polypropylene glycol-Sepharose under linear and overloaded chromatographic conditions. Dias-Cabral AC, Queiroz JA, Pinto NG. J Chromatogr A; 2003 Nov 14; 1018(2):137-53. PubMed ID: 14620566 [Abstract] [Full Text] [Related]
7. High-throughput isotherm determination and thermodynamic modeling of protein adsorption on mixed mode adsorbents. Nfor BK, Noverraz M, Chilamkurthi S, Verhaert PD, van der Wielen LA, Ottens M. J Chromatogr A; 2010 Oct 29; 1217(44):6829-50. PubMed ID: 20880532 [Abstract] [Full Text] [Related]
8. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography. Xiao Y, Rathore A, O'Connell JP, Fernandez EJ. J Chromatogr A; 2007 Jul 20; 1157(1-2):197-206. PubMed ID: 17524412 [Abstract] [Full Text] [Related]
9. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems. Chen J, Luo Q, Breneman CM, Cramer SM. J Chromatogr A; 2007 Jan 19; 1139(2):236-46. PubMed ID: 17126350 [Abstract] [Full Text] [Related]
10. Protein adsorption isotherm behavior in hydrophobic interaction chromatography. Chen J, Cramer SM. J Chromatogr A; 2007 Sep 21; 1165(1-2):67-77. PubMed ID: 17698076 [Abstract] [Full Text] [Related]
11. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt. Mirani MR, Rahimpour F. J Chromatogr A; 2015 Nov 27; 1422():170-177. PubMed ID: 26493472 [Abstract] [Full Text] [Related]
12. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography. Jakob LA, Beyer B, Janeiro Ferreira C, Lingg N, Jungbauer A, Tscheließnig R. J Chromatogr A; 2021 Jul 19; 1649():462231. PubMed ID: 34038776 [Abstract] [Full Text] [Related]
13. Hydrophobic interaction chromatography of proteins. III. Unfolding of proteins upon adsorption. Jungbauer A, Machold C, Hahn R. J Chromatogr A; 2005 Jun 24; 1079(1-2):221-8. PubMed ID: 16038308 [Abstract] [Full Text] [Related]
14. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography. Part I: selection of chromatographic system and estimation of adsorption isotherms. Palani S, Gueorguieva L, Rinas U, Seidel-Morgenstern A, Jayaraman G. J Chromatogr A; 2011 Sep 16; 1218(37):6396-401. PubMed ID: 21816402 [Abstract] [Full Text] [Related]
16. Parameter-by-parameter estimation method for adsorption isotherm in hydrophobic interaction chromatography. Yang YX, Chen YC, Yao SJ, Lin DQ. J Chromatogr A; 2024 Feb 08; 1716():464638. PubMed ID: 38219627 [Abstract] [Full Text] [Related]
17. Characterization of adsorption processes in analytical liquid-solid chromatography. Fornstedt T. J Chromatogr A; 2010 Feb 05; 1217(6):792-812. PubMed ID: 20053406 [Abstract] [Full Text] [Related]
18. Fitting competitive adsorption isotherms to the experimental distribution data in reversed-phase systems. Jandera P, Komers D. J Chromatogr A; 1997 Feb 21; 762(1-2):3-13. PubMed ID: 9098960 [Abstract] [Full Text] [Related]
19. Retention of ionizable compounds in reversed-phase liquid chromatography. Effect of the ionic strength of the mobile phase and the nature of the salts used on the overloading behavior. Gritti F, Guiochon G. Anal Chem; 2004 Aug 15; 76(16):4779-89. PubMed ID: 15307789 [Abstract] [Full Text] [Related]
20. Calorimetry for studying the adsorption of proteins in hydrophobic interaction chromatography. Rodler A, Ueberbacher R, Beyer B, Jungbauer A. Prep Biochem Biotechnol; 2019 Aug 15; 49(1):1-20. PubMed ID: 30735098 [Abstract] [Full Text] [Related] Page: [Next] [New Search]